Elasticsearch实战 | 必要的时候,还得空间换时间!

robinent
发布于 2022-4-28 17:53
浏览
0收藏

1、应用场景


实时数据流通过kafka后,根据业务需求,一部分直接借助kafka-connector入Elasticsearch不同的索引中。
另外一部分,则需要先做聚类、分类处理,将聚合出的分类结果存入ES集群的聚类索引中。如下图所示:
业务系统的分层结构可分为:接入层、数据处理层、数据存储层、接口层。
那么问题来了?
我们需要基于聚合(数据处理层)的结果实现检索和聚合分析操作,如何实现更快的检索和更高效的聚合分析效果呢?

Elasticsearch实战 | 必要的时候,还得空间换时间!-鸿蒙开发者社区

2、方案选型


方案一:
只建立一个索引,aggs_index。
数据处理层的聚合结果存入ES中的指定索引,同时将每个聚合主题相关的数据存入每个document下面的某个field下。如下示意图所示:

Elasticsearch实战 | 必要的时候,还得空间换时间!-鸿蒙开发者社区方案一示意图

方案二:
新建两个索引:aggs_index以及aggs_detail_index。
其中:
1)aggs_index存储事件列表信息。
2)aggs_detail_index存储事件关联的文章内容信息。
如下图所示:

Elasticsearch实战 | 必要的时候,还得空间换时间!-鸿蒙开发者社区3、方案对比


方案一优点:节省存储空间,只存储关联文章id,数据没有重复存储。
方案一缺点:检索、聚合慢,性能不能达标。
方案一后续的所有操作,都需要先遍历检索这一堆IDs,然后再进行检索、聚合分析操作。

 

操作实例如下(实际比这要复杂):
第一步:通过事件id,获取关联文章id列表;
第二步:基于关联文章id列表,进行检索和聚合操作。

Elasticsearch实战 | 必要的时候,还得空间换时间!-鸿蒙开发者社区

。。。

 

方案二优点:分开存储,便于一个索引中进行检索、聚合分析操作。
空间换时间,极大的提升检索效率、聚合速度。
方案二缺点:同样的数据,多存储了一份。
其对应的检索操作如下:

Elasticsearch实战 | 必要的时候,还得空间换时间!-鸿蒙开发者社区是真的吗?
用事实说话:
以下响应时间的单位为:ms。
方案一要在N个(N接近10)索引,每个索引近千万级别的数据中检索。


4、小结


 •  由以上图示,对比可知,方案二采取了空间换时间的策略,数据量多存储了一份,但是性能提升了10余倍。
 •  在实战开发中,我们要理性的选择存储方案,在磁盘成本日渐低廉的当下,把性能放在第一位,用户才能用的"爽“!

分类
收藏
回复
举报
回复
    相关推荐