什么是动态规划——从青蛙跳台阶开始了解
Hello 大家好,我是阿粉,动态规划(Dynamic Programming),简称 DP 相信大家在日常的工作或者学习的过程中都遇到过这个词,而且动态规划也是面试过程中最喜欢被问到的题目,阿粉在经历的不多的几场面试中都被问到了,实在是苦不堪言,不过好在阿粉还是有学过的,一些简单的套路阿粉还是懂的。下面就从一个很多人应该都不陌生的题目讲起。
案例 1
问:一只青蛙一次可以跳上 1 级台阶,也可以跳上 2 级,求该青蛙跳上一个 n
级的台阶总共有多少种跳法?
思考
刚开始看到这个题目的时候可能没什么思路,不过我们可以一点点的想下去,我们假设青蛙跳上一个 n
级的台阶总共有多少种跳法 f(n)
种跳法,那当 n = 0
时,f(0) = 0
,没有台阶当然没有跳法。n = 1
,f(1) = 1
;只有一个台阶的时候,只能跳 1 个;n = 2
,f(2) = 2
,当有两个台阶的时候,可以有 2 种跳法,一个一个跳和一下跳 2 个,那如果我们有三个台阶的话,是不是将一个台阶和两个台阶的总和加起来就可以了呢?所以我们就可以想到 f(3) = f(2) + f(1)
,所以我们能推导出 f(n) = f(n - 1) + f(n - 2)
;
编码
上面的分析可以想到,那么接下来我们就需要用代码来实现了,对于需要使用到之前的记录,我们可以考虑用一维数组来记录,所以就有了下面的这段代码。
public int dp(int n) {
if (n <= 0) {
return 0;
}
int[] dp = new int[n + 1];
dp[0] = 0;
dp[1] = 1;
dp[2] = 2;
// 之所以要从 3 开始,是因为 2 不符合下面的规则
for (int i = 3; i <= n; i++) {
dp[i] = dp[i - 1] + dp[i - 2];
}
return dp[n];
}
解释下上面的代码,首先我们创建了一个一维数组 dp,用于记录每个台阶有的跳法,然后从索引三开始遍历,运用公式
f(n) = f(n - 1) + f(n - 2)
; 进行赋值,结果直接输出 dp[n] 对应的数值即可。
分析
通过上面的案例,我们思考一下对于动态规划的题目我们需要怎么做,我们一开始定义了 n
级台阶有 f(n)
种跳法,然后通过模拟的方式计算出f(0),f(1),f(2)
,接着我们找到了 f(n) = f(n - 1) + f(n - 2);
的关系。按照这种思路我们可以总结出三个步骤,分别是
- 定义变量:把已知的和需要求解的,定义出变量,如上面的
n
和f(n)
; - 寻找表达式:找到
f(n)
和f(n - 1)
以及f(n - 2)
,等情况的表达式,如上面的f(n) = f(n - 1) + f(n - 2)
,这一步往往是最难的; - 寻找初始值:确保找到所有的临界条件,如上面的
f(0) = 0, f(1) = 1, f(2) = 2
;
上面的步骤是通用步骤,往往在第一步的时候我们设置的 f(n) 是一个数组,根据具体的场景可能是一维数组也有可能是二维数组,上面的例子我们定义的就是一维数组,而且往往我们需要求解什么就定义什么数组。
下面我们通过这种方式再看一道 LeetCode 的原题
案例 2
问:一个机器人位于一个 m x n
网格的左上角 (起始点在下图中标记为“Start” )。机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。问总共有多少条不同的路径?
img
根据上面的三个步骤,我们依次来解决,既然是 m x n
的网格,很显然我们需要用二维数组来解决问题,所以我们
- 定义
d[m][n]
表示在m x n
网格上移到右下角需要的总步数; - 因为机器人只能向右和向下移动,所以到达下一个格子只能是从左边或者上面,所以达到
m x n
的步数等于(m - 1) x n + m x (n - 1)
,也就是d[m][n] = d[m - 1][n] + d[m][n - 1]
; - 定义初始值
d[0][n] = 1
,d[n][0] = 1
,也就是只有一行或者一列的时候只有一种方法,全部向下或者向右移动;
编码
public int dp(int m, int n) {
if (m <=0 || n <= 0) {
return 0;
}
int[][] dp = new int[m][n];
//只有一列的时候
for (int i = 0; i < m; i++) {
d[i][0] = 1;
}
//只有一行的时候
for (int i = 0; i < n; i++) {
d[0][i] = 1;
}
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
d[i][j] = d[i][j - 1] + d[i - 1][j];
}
}
//数组的下标从 0 开始
return d[m - 1][n - 1];
}
通过上面的三个步骤,我们可以完美的解决问题,动态规划的问题难点就在于找寻规律和初始值,有点时候如果我们找不到规律就没办法了,而且如果初始值找的不完全也会有问题,这个只能多多练习了。
总结
动规划的题目在 LeetCode 上面有很多,大家可以根据上面提供的思路去多刷几道题,慢慢就会有感觉了,刷完动态规划的题目,相信对大家工作或者找工作肯定有很大的帮助。