分库分表的 9种分布式主键ID 生成方案,挺全乎的

heatdog
发布于 2022-12-15 16:00
浏览
0收藏

​《sharding-jdbc 分库分表的 4种分片策略》​​​ 中我们介绍了 ​​sharding-jdbc​​​ 4种分片策略的使用场景,可以满足基础的分片功能开发,这篇我们来看看分库分表后,应该如何为分片表生成全局唯一的主键 ​​ID​​。

引入任何一种技术都是存在风险的,分库分表当然也不例外,除非库、表数据量持续增加,大到一定程度,以至于现有高可用架构已无法支撑,否则不建议大家做分库分表,因为做了数据分片后,你会发现自己踏上了一段踩坑之路,而分布式主键 ​​ID​​ 就是遇到的第一个坑。

不同数据节点间生成全局唯一主键是个棘手的问题,一张逻辑表 ​​t_order​​​ 拆分成多个真实表 ​​t_order_n​​​,然后被分散到不同分片库 ​​db_0​​​、​​db_1​​... ,各真实表的自增键由于无法互相感知从而会产生重复主键,此时数据库本身的自增主键,就无法满足分库分表对主键全局唯一的要求。

 db_0--
    |-- t_order_0
    |-- t_order_1
    |-- t_order_2
 db_1--
    |-- t_order_0
    |-- t_order_1
    |-- t_order_2

尽管我们可以通过严格约束,各个分片表自增主键的 ​​初始值​​​ 和 ​​步长​​​ 的方式来解决 ​​ID​​ 重复的问题,但这样会让运维成本陡增,而且可扩展性极差,一旦要扩容分片表数量,原表数据变动比较大,所以这种方式不太可取。

 步长 step = 分表张数

 db_0--
    |-- t_order_0  ID: 0、6、12、18...
    |-- t_order_1  ID: 1、7、13、19...
    |-- t_order_2  ID: 2、8、14、20...
 db_1--
    |-- t_order_0  ID: 3、9、15、21...
    |-- t_order_1  ID: 4、10、16、22...
    |-- t_order_2  ID: 5、11、17、23...

目前已经有了许多第三放解决方案可以完美解决这个问题,比如基于 ​​UUID​​​、​​SNOWFLAKE​​​算法 、​​segment​​​号段,使用特定算法生成不重复键,或者直接引用主键生成服务,像美团(​​Leaf​​​)和 滴滴(​​TinyId​​)等。

而​​sharding-jdbc​​​ 内置了两种分布式主键生成方案,​​UUID​​​、​​SNOWFLAKE​​​,不仅如此它还抽离出分布式主键生成器的接口,以便于开发者实现自定义的主键生成器,后续我们会在自定义的生成器中接入 滴滴(​​TinyId​​)的主键生成服务。

前边介绍过在 sharding-jdbc 中要想为某个字段自动生成主键 ID,只需要在 ​​application.properties​​ 文件中做如下配置:

# 主键字段
spring.shardingsphere.sharding.tables.t_order.key-generator.column=order_id
# 主键ID 生成方案
spring.shardingsphere.sharding.tables.t_order.key-generator.type=UUID
# 工作机器 id
spring.shardingsphere.sharding.tables.t_order.key-generator.props.worker.id=123

​key-generator.column​​​ 表示主键字段,​​key-generator.type​​​ 为主键 ID 生成方案(内置或自定义的),​​key-generator.props.worker.id​​​ 为机器ID,在主键生成方案设为 ​​SNOWFLAKE​​ 时机器ID 会参与位运算。

在使用 sharding-jdbc 分布式主键时需要注意两点:

  • 一旦​​insert​​ 插入操作的实体对象中主键字段已经赋值,那么即使配置了主键生成方案也会失效,最后SQL 执行的数据会以赋的值为准。
  • 不要给主键字段设置自增属性,否则主键ID 会以默认的​​SNOWFLAKE​​​ 方式生成。比如:用​​mybatis plus​​​ 的​​@TableId​​​ 注解给字段​​order_id​​ 设置了自增主键,那么此时配置哪种方案,总是按雪花算法生成。

下面我们从源码上分析下 sharding-jdbc 内置主键生成方案 ​​UUID​​​、​​SNOWFLAKE​​ 是怎么实现的。

UUID

打开 ​​UUID​​​ 类型的主键生成实现类 ​​UUIDShardingKeyGenerator​​​ 的源码发现,它的生成规则只有 ​​UUID.randomUUID()​​ 这么一行代码,额~ 心中默默来了一句卧槽

UUID 虽然可以做到全局唯一性,但还是不推荐使用它作为主键,因为我们的实际业务中不管是 ​​user_id​​​ 还是 ​​order_id​​ 主键多为整型,而 UUID 生成的是个 32 位的字符串。

它的存储以及查询对 ​​MySQL​​​ 的性能消耗较大,而且 ​​MySQL​​ 官方也明确建议,主键要尽量越短越好,作为数据库主键 UUID 的无序性还会导致数据位置频繁变动,严重影响性能。

public final class UUIDShardingKeyGenerator implements ShardingKeyGenerator {
    private Properties properties = new Properties();

    public UUIDShardingKeyGenerator() {
    }

    public String getType() {
        return "UUID";
    }

    public synchronized Comparable<?> generateKey() {
        return UUID.randomUUID().toString().replaceAll("-", "");
    }

    public Properties getProperties() {
        return this.properties;
    }

    public void setProperties(Properties properties) {
        this.properties = properties;
    }
}

SNOWFLAKE

​SNOWFLAKE​​​(雪花算法)是默认使用的主键生成方案,生成一个 64bit的长整型(​​Long​​)数据。

​sharding-jdbc​​​ 中雪花算法生成的主键主要由 4部分组成,​​1bit​​​符号位、​​41bit​​​时间戳位、​​10bit​​​工作进程位以及 ​​12bit​​ 序列号位。

分库分表的 9种分布式主键ID 生成方案,挺全乎的-鸿蒙开发者社区

符号位(1bit位)

Java 中 Long 型的最高位是符号位,正数是0,负数是1,一般生成ID都为正数,所以默认为0

时间戳位(41bit)

41位的时间戳可以容纳的毫秒数是 2 的 41次幂,而一年的总毫秒数为 ​​1000L * 60 * 60 * 24 * 365​​,计算使用时间大概是69年,额~,我有生之间算是够用了。

Math.pow(2, 41) / (365 * 24 * 60 * 60 * 1000L) = = 69年 

工作进程位(10bit)

表示一个唯一的工作进程id,默认值为 0,可通过 ​​key-generator.props.worker.id​​ 属性设置。

spring.shardingsphere.sharding.tables.t_order.key-generator.props.worker.id=0000

序列号位(12bit)

同一毫秒内生成不同的ID。

时钟回拨

了解了雪花算法的主键 ID 组成后不难发现,这是一种严重依赖于服务器时间的算法,而依赖服务器时间的就会遇到一个棘手的问题:​​时钟回拨​​。

为什么会出现时钟回拨呢?

互联网中有一种网络时间协议 ​​ntp​​​ 全称 (​​Network Time Protocol​​) ,专门用来同步、校准网络中各个计算机的时间。

这就是为什么,我们的手机现在不用手动校对时间,可每个人的手机时间还都是一样的。

我们的硬件时钟可能会因为各种原因变得不准( ​​快了​​​ 或 ​​慢了​​​ ),此时就需要 ​​ntp​​​ 服务来做时间校准,做校准的时候就会发生服务器时钟的 ​​跳跃​​​ 或者 ​​回拨​​ 的问题。

雪花算法如何解决时钟回拨

服务器时钟回拨会导致产生重复的 ID,​​SNOWFLAKE​​ 方案中对原有雪花算法做了改进,增加了一个最大容忍的时钟回拨毫秒数。

如果时钟回拨的时间超过最大容忍的毫秒数阈值,则程序直接报错;如果在可容忍的范围内,默认分布式主键生成器,会等待时钟同步到最后一次主键生成的时间后再继续工作。

最大容忍的时钟回拨毫秒数,默认值为 0,可通过属性 ​​max.tolerate.time.difference.milliseconds​​ 设置。

# 最大容忍的时钟回拨毫秒数
spring.shardingsphere.sharding.tables.t_order.key-generator.max.tolerate.time.difference.milliseconds=5

下面是看下它的源码实现类 ​​SnowflakeShardingKeyGenerator​​,核心流程大概如下:

最后一次生成主键的时间 ​​lastMilliseconds​​​ 与 当前时间​​currentMilliseconds​​​ 做比较,如果 ​​lastMilliseconds​​​ > ​​currentMilliseconds​​则意味着时钟回调了。

那么接着判断两个时间的差值(​​timeDifferenceMilliseconds​​​)是否在设置的最大容忍时间阈值 ​​max.tolerate.time.difference.milliseconds​​​内,在阈值内则线程休眠差值时间 ​​Thread.sleep(timeDifferenceMilliseconds)​​,否则大于差值直接报异常。

 
/**
 * @author xiaofu
 */
public final class SnowflakeShardingKeyGenerator implements ShardingKeyGenerator{
    @Getter
    @Setter
    private Properties properties = new Properties();
    
    public String getType() {
        return "SNOWFLAKE";
    }
    
    public synchronized Comparable<?> generateKey() {
     /**
      * 当前系统时间毫秒数 
      */ 
        long currentMilliseconds = timeService.getCurrentMillis();
        /**
         * 判断是否需要等待容忍时间差,如果需要,则等待时间差过去,然后再获取当前系统时间 
         */ 
        if (waitTolerateTimeDifferenceIfNeed(currentMilliseconds)) {
            currentMilliseconds = timeService.getCurrentMillis();
        }
        /**
         * 如果最后一次毫秒与 当前系统时间毫秒相同,即还在同一毫秒内 
         */
        if (lastMilliseconds == currentMilliseconds) {
         /**
          * &位与运算符:两个数都转为二进制,如果相对应位都是1,则结果为1,否则为0
          * 当序列为4095时,4095+1后的新序列与掩码进行位与运算结果是0
          * 当序列为其他值时,位与运算结果都不会是0
          * 即本毫秒的序列已经用到最大值4096,此时要取下一个毫秒时间值
          */
            if (0L == (sequence = (sequence + 1) & SEQUENCE_MASK)) {
                currentMilliseconds = waitUntilNextTime(currentMilliseconds);
            }
        } else {
         /**
          * 上一毫秒已经过去,把序列值重置为1 
          */
            vibrateSequenceOffset();
            sequence = sequenceOffset;
        }
        lastMilliseconds = currentMilliseconds;
        
        /**
         * XX......XX XX000000 00000000 00000000 时间差 XX
         *    XXXXXX XXXX0000 00000000 机器ID XX
         *               XXXX XXXXXXXX 序列号 XX
         *  三部分进行|位或运算:如果相对应位都是0,则结果为0,否则为1
         */
        return ((currentMilliseconds - EPOCH) << TIMESTAMP_LEFT_SHIFT_BITS) | (getWorkerId() << WORKER_ID_LEFT_SHIFT_BITS) | sequence;
    }
    
    /**
     * 判断是否需要等待容忍时间差
     */
    @SneakyThrows
    private boolean waitTolerateTimeDifferenceIfNeed(final long currentMilliseconds) {
     /**
      * 如果获取ID时的最后一次时间毫秒数小于等于当前系统时间毫秒数,属于正常情况,则不需要等待 
      */
        if (lastMilliseconds <= currentMilliseconds) {
            return false;
        }
        /**
         * ===>时钟回拨的情况(生成序列的时间大于当前系统的时间),需要等待时间差 
         */
        /**
         * 获取ID时的最后一次毫秒数减去当前系统时间毫秒数的时间差 
         */
        long timeDifferenceMilliseconds = lastMilliseconds - currentMilliseconds;
        /**
         * 时间差小于最大容忍时间差,即当前还在时钟回拨的时间差之内 
         */
        Preconditions.checkState(timeDifferenceMilliseconds < getMaxTolerateTimeDifferenceMilliseconds(), 
                "Clock is moving backwards, last time is %d milliseconds, current time is %d milliseconds", lastMilliseconds, currentMilliseconds);
        /**
         * 线程休眠时间差 
         */
        Thread.sleep(timeDifferenceMilliseconds);
        return true;
    }
    
    // 配置的机器ID
    private long getWorkerId() {
        long result = Long.valueOf(properties.getProperty("worker.id", String.valueOf(WORKER_ID)));
        Preconditions.checkArgument(result >= 0L && result < WORKER_ID_MAX_VALUE);
        return result;
    }
    
    private int getMaxTolerateTimeDifferenceMilliseconds() {
        return Integer.valueOf(properties.getProperty("max.tolerate.time.difference.milliseconds", String.valueOf(MAX_TOLERATE_TIME_DIFFERENCE_MILLISECONDS)));
    }
    
    private long waitUntilNextTime(final long lastTime) {
        long result = timeService.getCurrentMillis();
        while (result <= lastTime) {
            result = timeService.getCurrentMillis();
        }
        return result;
    }
}

但从 ​​SNOWFLAKE​​​ 方案生成的主键ID 来看,​​order_id​​​ 它是一个18位的长整型数字,是不是发现它太长了,想要 ​​MySQL​​ 那种从 0 递增的自增主键该怎么实现呢?别急,后边已经会给出了解决办法!

分库分表的 9种分布式主键ID 生成方案,挺全乎的-鸿蒙开发者社区

自定义

​sharding-jdbc​​​ 利用 ​​SPI​​​ 全称( ​​Service Provider Interface​​​) 机制拓展主键生成规则,这是一种服务发现机制,通过扫描项目路径 ​​META-INF/services​​ 下的文件,并自动加载文件里所定义的类。

实现自定义主键生成器其实比较简单,只有两步。

第一步,实现 ​​ShardingKeyGenerator​​​ 接口,并重写其内部方法,其中 ​​getType()​​​ 方法为自定义的主键生产方案类型、​​generateKey()​​ 方法则是具体生成主键的规则。

下面代码中用 ​​AtomicInteger​​ 来模拟实现一个有序自增的 ID 生成。

/**
 * @Author: xiaofu
 * @Description: 自定义主键生成器
 */
@Component
public class MyShardingKeyGenerator implements ShardingKeyGenerator {


    private final AtomicInteger count = new AtomicInteger();

    /**
     * 自定义的生成方案类型
     */
    @Override
    public String getType() {
        return "XXX";
    }

    /**
     * 核心方法-生成主键ID
     */
    @Override
    public Comparable<?> generateKey() {
        return count.incrementAndGet();
    }

    @Override
    public Properties getProperties() {
        return null;
    }

    @Override
    public void setProperties(Properties properties) {

    }
}

第二步,由于是利用 ​​SPI​​​ 机制实现功能拓展,我们要在 ​​META-INF/services​​ 文件中配置自定义的主键生成器类路劲。

com.xiaofu.sharding.key.MyShardingKeyGenerator

分库分表的 9种分布式主键ID 生成方案,挺全乎的-鸿蒙开发者社区

上面这些弄完我们测试一下,配置定义好的主键生成类型 ​​XXX​​,并插入几条数据看看效果。

spring.shardingsphere.sharding.tables.t_order.key-generator.column=order_id
spring.shardingsphere.sharding.tables.t_order.key-generator.type=XXX

通过控制台的SQL 解析日志发现,​​order_id​​ 字段已按照有序自增的方式插入记录,说明配置的没问题。

分库分表的 9种分布式主键ID 生成方案,挺全乎的-鸿蒙开发者社区

举一反九

既然可以自定义生成方案,那么实现分布式主键的思路就很多了,又想到之前我写的这篇 ​​《9种 分布式ID生成方案》​​​,发现可以完美兼容,这里挑选其中的 滴滴(​​Tinyid​​)来实践一下,由于它是个单独的分布式ID生成服务,所以要先搭建环境了。

​Tinyid​​​ 的服务提供​​Http​​​ 和 ​​Tinyid-client​​​ 两种接入方式,下边使用 ​​Tinyid-client​​ 方式快速使用,更多的细节到这篇文章里看吧,实在是介绍过太多次了。

Tinyid 服务搭建

先拉源代码 ​​https://github.com/didi/tinyid.git​​。

由于是基于号段模式实现的分布式ID,所以依赖于数据库,要创建相应的表 ​​tiny_id_info​​​ 、​​tiny_id_token​​ 并插入默认数据。


CREATE TABLE `tiny_id_info` (
 `id` BIGINT (20) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT '自增主键',
 `biz_type` VARCHAR (63) NOT NULL DEFAULT '' COMMENT '业务类型,唯一',
 `begin_id` BIGINT (20) NOT NULL DEFAULT '0' COMMENT '开始id,仅记录初始值,无其他含义。初始化时begin_id和max_id应相同',
 `max_id` BIGINT (20) NOT NULL DEFAULT '0' COMMENT '当前最大id',
 `step` INT (11) DEFAULT '0' COMMENT '步长',
 `delta` INT (11) NOT NULL DEFAULT '1' COMMENT '每次id增量',
 `remainder` INT (11) NOT NULL DEFAULT '0' COMMENT '余数',
 `create_time` TIMESTAMP NOT NULL DEFAULT '2010-01-01 00:00:00' COMMENT '创建时间',
 `update_time` TIMESTAMP NOT NULL DEFAULT '2010-01-01 00:00:00' COMMENT '更新时间',
 `version` BIGINT (20) NOT NULL DEFAULT '0' COMMENT '版本号',
 PRIMARY KEY (`id`),
 UNIQUE KEY `uniq_biz_type` (`biz_type`)
) ENGINE = INNODB AUTO_INCREMENT = 1 DEFAULT CHARSET = utf8 COMMENT 'id信息表';

CREATE TABLE `tiny_id_token` (
 `id` INT (11) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT '自增id',
 `token` VARCHAR (255) NOT NULL DEFAULT '' COMMENT 'token',
 `biz_type` VARCHAR (63) NOT NULL DEFAULT '' COMMENT '此token可访问的业务类型标识',
 `remark` VARCHAR (255) NOT NULL DEFAULT '' COMMENT '备注',
 `create_time` TIMESTAMP NOT NULL DEFAULT '2010-01-01 00:00:00' COMMENT '创建时间',
 `update_time` TIMESTAMP NOT NULL DEFAULT '2010-01-01 00:00:00' COMMENT '更新时间',
 PRIMARY KEY (`id`)
) ENGINE = INNODB AUTO_INCREMENT = 1 DEFAULT CHARSET = utf8 COMMENT 'token信息表';

INSERT INTO `tiny_id_token` (`id`, `token`, `biz_type`, `remark`, `create_time`, `update_time`) VALUES ('1', '0f673adf80504e2eaa552f5d791b644c', 'order', '1', '2017-12-14 16:36:46', '2017-12-14 16:36:48');

INSERT INTO `tiny_id_info` (`id`, `biz_type`, `begin_id`, `max_id`, `step`, `delta`, `remainder`, `create_time`, `update_time`, `version`) VALUES ('1', 'order', '1', '1', '100000', '1', '0', '2018-07-21 23:52:58', '2018-07-22 23:19:27', '1');

并在 ​​Tinyid​​ 服务中配置上边表所在数据源信息

datasource.tinyid.primary.url=jdbc:mysql://47.93.6.e:3306/ds-0?autoReconnect=true&useUnicode=true&characterEncoding=UTF-8
datasource.tinyid.primary.username=root
datasource.tinyid.primary.password=root

最后项目 ​​maven install​​​ ,右键 ​​TinyIdServerApplication​​​ 启动服务, ​​Tinyid​​ 分布式ID生成服务就搭建完毕了。

自定义 Tinyid 主键类型

​Tinyid​​​ 服务搭建完下边在项目中引入它,新建个 ​​tinyid_client.properties​​​ 文件其中添加 ​​tinyid.server​​​ 和 ​​tinyid.token​​​ 属性,​​token​​ 为之前 SQL 预先插入的用户数据。

# tinyid 分布式ID
# 服务地址
tinyid.server=127.0.0.1:9999
# 业务token
tinyid.token=0f673adf80504e2eaa552f5d791b644c

代码中获取 ID更简单,只需一行代码,业务类型 ​​order​​ 是之前 SQ L 预先插入的数据。

Long id = TinyId.nextId("order");

我们开始自定义 ​​Tinyid​​​  主键生成类型的实现类 ​​TinyIdShardingKeyGenerator​​ 。

/**
 * @Author: xiaofu
 * @Description: 自定义主键生成器
 */
@Component
public class TinyIdShardingKeyGenerator implements ShardingKeyGenerator {
    
    /**
     * 自定义的生成方案类型
     */
    @Override
    public String getType(){
        return "tinyid";
    }

    /**
     * 核心方法-生成主键ID
     */
    @Override
    public Comparable<?> generateKey() {
        
        Long id = TinyId.nextId("order");
        
        return id;
    }

    @Override
    public Properties getProperties(){
        return null;
    }

    @Override
    public void setProperties(Properties properties){

    }
}

并在配置文件中启用 ​​Tinyid​​ 

# 主键字段
spring.shardingsphere.sharding.tables.t_order.key-generator.column=order_id
# 主键ID 生成方案
spring.shardingsphere.sharding.tables.t_order.key-generator.type=tinyid

测试 Tinyid 主键

向数据库插入订单记录测试发现,主键ID字段 ​​order_id​​​ 已经为趋势递增的了, ​​Tinyid​​ 

服务成功接入,完美!

分库分表的 9种分布式主键ID 生成方案,挺全乎的-鸿蒙开发者社区

总结

后续的八种生成方式大家参考 ​​《9种 分布式ID生成方案》​​ 按需接入吧,整体比较简单这里就不依次实现了。

案例 GitHub 地址:​​https://github.com/chengxy-nds/Springboot-Notebook/tree/master/springboot-sharding-jdbc​


文章转载自公众号:程序员小富


分类
已于2022-12-15 16:00:45修改
收藏
回复
举报
回复
    相关推荐