1.3w字,一文详解死锁!(上篇)
死锁(Dead Lock)指的是两个或两个以上的运算单元(进程、线程或协程),都在等待对方停止执行,以取得系统资源,但是没有一方提前退出,就称为死锁。
1.死锁演示
死锁的形成分为两个方面,一个是使用内置锁 synchronized 形成的死锁,另一种是使用显式锁 Lock 实现的死锁,接下来我们分别来看。
1.1 死锁 synchronized 版
publicclass DeadLockExample {
public static void main(String[] args){
Object lockA = new Object(); // 创建锁 A
Object lockB = new Object(); // 创建锁 B
// 创建线程 1
Thread t1 = new Thread(new Runnable() {
@Override
public void run(){
// 先获取锁 A
synchronized (lockA) {
System.out.println("线程 1:获取到锁 A!");
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
// 尝试获取锁 B
System.out.println("线程 1:等待获取 B...");
synchronized (lockB) {
System.out.println("线程 1:获取到锁 B!");
}
}
}
});
t1.start(); // 运行线程
// 创建线程 2
Thread t2 = new Thread(new Runnable() {
@Override
public void run(){
// 先获取锁 B
synchronized (lockB) {
System.out.println("线程 2:获取到锁 B!");
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
// 尝试获取锁 A
System.out.println("线程 2:等待获取 A...");
synchronized (lockA) {
System.out.println("线程 2:获取到锁 A!");
}
}
}
});
t2.start(); // 运行线程
}
}
以上程序的执行结果如下:
从上述结果可以看出,线程 1 和线程 2 都在等待对方释放锁,这样就造成了死锁问题。
1.2 死锁 Lock 版
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
publicclass DeadLockByReentrantLockExample {
public static void main(String[] args){
Lock lockA = new ReentrantLock(); // 创建锁 A
Lock lockB = new ReentrantLock(); // 创建锁 B
// 创建线程 1
Thread t1 = new Thread(new Runnable() {
@Override
public void run(){
lockA.lock(); // 加锁
System.out.println("线程 1:获取到锁 A!");
try {
Thread.sleep(1000);
System.out.println("线程 1:等待获取 B...");
lockB.lock(); // 加锁
try {
System.out.println("线程 1:获取到锁 B!");
} finally {
lockA.unlock(); // 释放锁
}
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
lockA.unlock(); // 释放锁
}
}
});
t1.start(); // 运行线程
// 创建线程 2
Thread t2 = new Thread(new Runnable() {
@Override
public void run(){
lockB.lock(); // 加锁
System.out.println("线程 2:获取到锁 B!");
try {
Thread.sleep(1000);
System.out.println("线程 2:等待获取 A...");
lockA.lock(); // 加锁
try {
System.out.println("线程 2:获取到锁 A!");
} finally {
lockA.unlock(); // 释放锁
}
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
lockB.unlock(); // 释放锁
}
}
});
t2.start(); // 运行线程
}
}
以上程序的执行结果如下:
2.死锁产生原因
通过以上示例,我们可以得出结论,要产生死锁需要满足以下 4 个条件:
- 互斥条件:指运算单元(进程、线程或协程)对所分配到的资源具有排它性,也就是说在一段时间内某个锁资源只能被一个运算单元所占用。
- 请求和保持条件:指运算单元已经保持至少一个资源,但又提出了新的资源请求,而该资源已被其它运算单元占有,此时请求运算单元阻塞,但又对自己已获得的其它资源保持不放。
- 不可剥夺条件:指运算单元已获得的资源,在未使用完之前,不能被剥夺。
- 环路等待条件:指在发生死锁时,必然存在运算单元和资源的环形链,即运算单元正在等待另一个运算单元占用的资源,而对方又在等待自己占用的资源,从而造成环路等待的情况。
只有以上 4 个条件同时满足,才会造成死锁问题。
3.死锁排查工具
如果程序出现死锁问题,可通过以下 4 种方案中的任意一种进行分析和排查。
3.1 jstack
我们在使用 jstack 之前,先要通过 jps 得到运行程序的进程 ID,使用方法如下:
“jps -l”可以查询本机所有的 Java 程序,jps(Java Virtual Machine Process Status Tool)是 Java 提供的一个显示当前所有 Java 进程 pid 的命令,适合在 linux/unix/windows 平台上简单查看当前 Java 进程的一些简单情况,“-l”用于输出进程 pid 和运行程序完整路径名(包名和类名)。
有了进程 ID(PID)之后,我们就可以使用“jstack -l PID”来发现死锁问题了,如下图所示:
jstack 用于生成 Java 虚拟机当前时刻的线程快照,“-l”表示长列表(long),打印关于锁的附加信息。
PS:可以使用 jstack -help 查看更多命令使用说明。
3.2 jconsole
使用 jconsole 需要打开 JDK 的 bin 目录,找到 jconsole 并双击打开,如下图所示:
然后选择要调试的程序,如下图所示:
之后点击连接进入,选择“不安全的连接”进入监控主页,如下图所示:
之后切换到“线程”模块,点击“检测死锁”按钮,如下图所示:
之后稍等片刻就会检测出死锁的相关信息,如下图所示:
3.3 jvisualvm
jvisualvm 也在 JDK 的 bin 目录中,同样是双击打开:
稍等几秒之后,jvisualvm 中就会出现本地的所有 Java 程序,如下图所示:
双击选择要调试的程序:
单击鼠标进入“线程”模块,如下图所示:
从上图可以看出,当我们切换到线程一栏之后就会直接显示出死锁信息,之后点击“线程 Dump”生成死锁的详情信息,如下图所示:
3.4 jmc
jmc 是 Oracle Java Mission Control 的缩写,是一个对 Java 程序进行管理、监控、概要分析和故障排查的工具套件。它也是在 JDK 的 bin 目录中,同样是双击启动,如下图所示:
jmc 主页信息如下:
之后选中要排查的程序,右键“启动 JMX 控制台”查看此程序的详细内容,如下图所示:
然后点击“线程”,勾中“死锁检测”就可以发现死锁和死锁的详情信息,如下图所示:
4.死锁解决方案
4.1 死锁解决方案分析
接下来我们来分析一下,产生死锁的 4 个条件,哪些是可以破坏的?哪些是不能被破坏的?
- 互斥条件:系统特性,不能被破坏。
- 请求和保持条件:可以被破坏。
- 不可剥夺条件:系统特性,不能被破坏。
- 环路等待条件:可以被破坏。
通过上述分析,我们可以得出结论,我们只能通过破坏请求和保持条件或者是环路等待条件,从而来解决死锁的问题,那上线,我们就先从破坏“环路等待条件”开始来解决死锁问题。
4.2 解决方案1:顺序锁
所谓的顺序锁指的是通过有顺序的获取锁,从而避免产生环路等待条件,从而解决死锁问题的。
当我们没有使用顺序锁时,程序的执行可能是这样的:
线程 1 先获取了锁 A,再获取锁 B,线程 2 与 线程 1 同时执行,线程 2 先获取锁 B,再获取锁 A,这样双方都先占用了各自的资源(锁 A 和锁 B)之后,再尝试获取对方的锁,从而造成了环路等待问题,最后造成了死锁的问题。
此时我们只需要将线程 1 和线程 2 获取锁的顺序进行统一,也就是线程 1 和线程 2 同时执行之后,都先获取锁 A,再获取锁 B,执行流程如下图所示:
因为只有一个线程能成功获取到锁 A,没有获取到锁 A 的线程就会等待先获取锁 A,此时得到锁 A 的线程继续获取锁 B,因为没有线程争抢和拥有锁 B,那么得到锁 A 的线程就会顺利的拥有锁 B,之后执行相应的代码再将锁资源全部释放,然后另一个等待获取锁 A 的线程就可以成功获取到锁资源,执行后续的代码,这样就不会出现死锁的问题了。
顺序锁的实现代码如下所示:
publicclass SolveDeadLockExample {
public static void main(String[] args){
Object lockA = new Object(); // 创建锁 A
Object lockB = new Object(); // 创建锁 B
// 创建线程 1
Thread t1 = new Thread(new Runnable() {
@Override
public void run(){
synchronized (lockA) {
System.out.println("线程 1:获取到锁 A!");
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("线程 1:等待获取 B...");
synchronized (lockB) {
System.out.println("线程 1:获取到锁 B!");
}
}
}
});
t1.start(); // 运行线程
// 创建线程 2
Thread t2 = new Thread(new Runnable() {
@Override
public void run(){
synchronized (lockA) {
System.out.println("线程 2:获取到锁 A!");
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("线程 2:等待获取B...");
synchronized (lockB) {
System.out.println("线程 2:获取到锁 B!");
}
}
}
});
t2.start(); // 运行线程
}
}
以上程序的执行结果如下:
从上述执行结果可以看出,程序并没有出现死锁的问题。
文章转载自公众号:Java中文社群