OpenHarmony蓝牙自动配对流程分析 原创 精华
作者:石悌君
前言
大家在实际使用蓝牙时会发现,有些蓝牙设备配对需要输入配对码,有些蓝牙设备则会自动配对;那这些设备有什么区别,OpenHarmony的蓝牙协议栈又是怎么实现的呢?本文对此进行分析和解读
蓝牙协议分析
SSP(SECURE SIMPLE PAIRING)时当前蓝牙协议中最推荐采用的认证配对方案;在SSP配对模式下,认证配对总体分为两步:IO Capability信息交换和用户确认
IO Capability
蓝牙设备按照输入输出能力分为四类,以设备A作Initiator组合后认证配置方式如下表
设备B\设备A | DisplayOnly | DisplayYesNo | KeyboardOnly | NoInputNoOutput |
---|---|---|---|---|
DisplayOnly | 自动配对 | A用户确认,B自动配对 | B显示数字,A输入 | 自动配对 |
DisplayYesNo | A自动配对,B用户确认 | 用户确认 | B显示数字,A输入 | A自动配对,B用户确认 |
KeyboardOnly | A显示数字,B输入 | A显示数字,B输入 | 输入passkey | 自动配对 |
NoInputNoOutput | 自动配对 | B自动配对,A用户确认 | 自动配对 | 自动配对 |
交换设备IO Capability信息流程如下图
MITM Protection
参考蓝牙core specification Version 5.4 | Vol 4, Part E, 7.1.29,可以发现IO Capability消息中除了IO_Capability字段还包括Authentication_Requirements字段,该字段同样影响设备配对流程
man-in-the-middle(MITM) ,中间人攻击是一种常见的攻击手法,蓝牙SSP机制在用户确认模式时可以有效防止中间人攻击。
协议规定:如果两台设备都明确指定不需要进行MITM攻击保护,设备应该按照自动匹配流程处理
用户确认
host收到User_Confirmation_Request消息后需要按照上表中的IO Capability要求用户确认或自动回复确认信息
OpenHarmony实现流程
IO Capability信息交换
void GapOnIOCapabilityResponseEvent(const HciIoCapabilityResponseEventParam *eventParam)
{
LOG_DEBUG("%{public}s:" BT_ADDR_FMT "", __FUNCTION__, BT_ADDR_FMT_OUTPUT(eventParam->bdAddr.raw));
BtAddr addr = BT_ADDR_NULL;
GapChangeHCIAddr(&addr, &eventParam->bdAddr, BT_PUBLIC_DEVICE_ADDRESS);
DeviceInfo *devInfo = NULL;
devInfo = ListForEachData(GapGetConnectionInfoBlock()->devicelist, GapFindConnectionDeviceByAddr, (void *)&addr);
if (devInfo != NULL) {
devInfo->remoteAuthReq = eventParam->authenticationRequirements;
}
if (g_authenticationCallback.callback.IOCapabilityRsp) {
g_authenticationCallback.callback.IOCapabilityRsp(
&addr, eventParam->IOCapability, g_authenticationCallback.context);
}
}
GapOnIOCapabilityResponseEvent函数处理对端设备的IOCapability信息,remoteAuthReq保存对端设备的认证要求;同时在ClassicAdapter模块保存对端设备IOCapability能力;这里比较奇怪的是IOCapability和remoteAuthReq分在两个模块保存
void ClassicAdapter::SaveRemoteIoCapability(const BtAddr &addr, uint8_t ioCapability)
{
HILOGI("enter");
RawAddress device = RawAddress::ConvertToString(addr.addr);
std::shared_ptr<ClassicRemoteDevice> remoteDevice = FindRemoteDevice(device);
remoteDevice->SetIoCapability(ioCapability);
}
确认处理
void GapOnUserConfirmationRequestEvent(const HciUserConfirmationRequestEventParam *eventParam)
{
/* ... */
int localMitmRequired = GAP_MITM_REQUIRED;
int remoteMitmRequired = GAP_MITM_REQUIRED;
DeviceInfo *devInfo =
ListForEachData(GapGetConnectionInfoBlock()->devicelist, GapFindConnectionDeviceByAddr, (void*)&addr);
if (devInfo != NULL) {
remoteMitmRequired = devInfo->remoteAuthReq & GAP_MITM_REQUIRED;
if (devInfo->actionReq != NULL) {
if (!devInfo->actionReq->needAuthentication && devInfo->actionReq->needUnauthentication) {
localMitmRequired = GAP_MITM_NOT_REQUIRED;
}
} else {
localMitmRequired = remoteMitmRequired;
}
}
if (g_authenticationCallback.callback.userConfirmReq) {
g_authenticationCallback.callback.userConfirmReq(
&addr, eventParam->numericValue,localMitmRequired, remoteMitmRequired, g_authenticationCallback.context);
} else {
GapUserConfirmationRequestNegativeReply(&addr);
}
}
GapOnUserConfirmationRequestEvent函数获取到IO Capability交换流程中保存认证要求,并获取本设备最近一次连接的认证设置,作为参数传递到ClassicAdapter::SSPConfirmReq函数进行处理
void ClassicAdapter::SSPConfirmReq(const BtAddr &addr, int reqType, int number,
int localMitmRequired, int remoteMitmRequired)
{
HILOGI("reqTyep: %{public}d", reqType);
RawAddress device = RawAddress::ConvertToString(addr.addr);
std::shared_ptr<ClassicRemoteDevice> remoteDevice = FindRemoteDevice(device);
remoteDevice->SetPairConfirmState(PAIR_CONFIRM_STATE_USER_CONFIRM);
remoteDevice->SetPairConfirmType(reqType);
int remoteIo = remoteDevice->GetIoCapability();
if (remoteDevice->GetPairedStatus() == PAIR_CANCELING) {
UserConfirmAutoReply(device, reqType, false);
} else if (CheckAutoReply(remoteIo, localMitmRequired, remoteMitmRequired) == true) {
UserConfirmAutoReply(device, reqType, true);
} else {
reqType = CheckSspConfirmType(remoteIo, reqType);
SendPairConfirmed(device, reqType, number);
}
}
ClassicAdapter::SSPConfirmReq函数取出本设备及对端设备的IOCapability,调用CheckAutoReply函数结合认证信息进行最终的综合判断:如果是自动配对,则由ClassicAdapter::SSPConfirmReq调用UserConfirmAutoReply直接确认;否则向用户显示确认信息,要求用户确认
bool ClassicAdapter::CheckAutoReply(int remoteIo, int localMitmRequired, int remoteMitmRequired) const
{
HILOGI("enter");
bool autoReply = false;
int localIo = adapterProperties_.GetIoCapability();
HILOGI("local io capability = %{public}d <==> remote io capability = %{public}d"
"local mitm = %{public}d <==> remote mitm = %{public}d", localIo, remoteIo,
localMitmRequired, remoteMitmRequired);
if (localMitmRequired == GAP_MITM_NOT_REQUIRED && remoteMitmRequired == GAP_MITM_NOT_REQUIRED) {
return true;
}
switch (localIo) {
case GAP_IO_DISPLAYONLY:
autoReply = (remoteIo != GAP_IO_KEYBOARDONLY) ? true : false;
break;
case GAP_IO_KEYBOARDONLY:
autoReply = (remoteIo == GAP_IO_NOINPUTNOOUTPUT) ? true : false;
break;
case GAP_IO_NOINPUTNOOUTPUT:
autoReply = true;
break;
default:
break;
}
return autoReply;
}
总结
本文介绍了蓝牙协议中SSP认证配对过程及OpenHarmony中相关实现流程,蓝牙配对时是否会出现用户确认提示信息依赖两端设备能力,同时也依赖业务对安全性的要求;如果业务本身有其它传输加密能力,可以指定不认证方式进行连接,避免用户多次认证导致降低使用体验,如OpenHarmony软总线就是采用这种方式建立蓝牙连接。
通常蓝牙的传输距离都比较近,还需要输入配对码的应该是对保密程度要求非常高的设备了
学习一下蓝牙知识
这下明白是如何配对的了
get了新知识