如何设计一个高并发系统?
9 索引
在高并发的系统当中,用户经常需要查询数据,对数据库增加索引
,是必不可少的一个环节。
尤其是表中数据非常多时,加了索引,跟没加索引,执行同一条sql语句,查询相同的数据,耗时可能会相差N个数量级。
虽说索引能够提升SQL语句的查询速度,但索引也不是越多越好。
在insert数据时,需要给索引分配额外的资源,对insert的性能有一定的损耗。
我们要根据实际业务场景来决定创建哪些索引,索引少了,影响查询速度,索引多了,影响写入速度。
很多时候,我们需要经常对索引做优化。
- 可以将多个单个索引,改成一个联合索引。
- 删除不要索引。
- 使用explain关键字,查询SQL语句的执行计划,看看哪些走了索引,哪些没有走索引。
- 要注意索引失效的一些场景。
- 必要时可以使用force index来强制查询sql走某个索引。
如果你想进一步了解explain的详细用法,可以看看我的另一篇文章《explain | 索引优化的这把绝世好剑,你真的会用吗?》。
如果你想进一步了解哪些情况下索引会失效,可以看看我的另一篇文章《聊聊索引失效的10种场景,太坑了》。
10 批处理
有时候,我们需要从指定的用户集合中,查询出有哪些是在数据库中已经存在的。
实现代码可以这样写:
public List<User> queryUser(List<User> searchList){
if (CollectionUtils.isEmpty(searchList)) {
return Collections.emptyList();
}
List<User> result = Lists.newArrayList();
searchList.forEach(user -> result.add(userMapper.getUserById(user.getId())));
return result;
}
这里如果有50个用户,则需要循环50次,去查询数据库。我们都知道,每查询一次数据库,就是一次远程调用。
如果查询50次数据库,就有50次远程调用,这是非常耗时的操作。
那么,我们如何优化呢?
答:批处理
。
具体代码如下:
public List<User> queryUser(List<User> searchList){
if (CollectionUtils.isEmpty(searchList)) {
return Collections.emptyList();
}
List<Long> ids = searchList.stream().map(User::getId).collect(Collectors.toList());
return userMapper.getUserByIds(ids);
}
提供一个根据用户id集合批量查询
用户的接口,只远程调用一次,就能查询出所有的数据。
这里有个需要注意的地方是:id集合的大小要做限制,最好一次不要请求太多的数据。要根据实际情况而定,建议控制每次请求的记录条数在500以内。
11 集群
系统部署的服务器节点,可能会down机,比如:服务器的磁盘坏了,或者操作系统出现内存不足问题。
为了保证系统的高可用,我们需要部署多个节点,构成一个集群
,防止因为部分服务器节点挂了,导致系统的整个服务不可用的情况发生。
集群有很多种:
- 应用服务器集群
- 数据库集群
- 中间件集群
- 文件服务器集群
我们以中间件Redis
为例。
在高并发系统中,用户的数据量非常庞大时,比如用户的缓存数据总共大小有40G,一个服务器节点只有16G的内存。
这样需要部署3台服务器节点。
该业务场景,使用普通的master/slave模式,或者使用哨兵模式都行不通。
40G的数据,不能只保存到一台服务器节点,需要均分到3个master服务器节点上,一个master服务器节点保存13.3G的数据。
当有用户请求过来的时候,先经过路由,根据用户的id或者ip,每次都访问指定的服务器节点。
这用就构成了一个集群。
但这样有风险,为了防止其中一个master服务器节点挂掉,导致部分用户的缓存访问不了,还需要对数据做备份。
这样每一个master,都需要有一个slave,做数据备份。
如果master挂了,可以将slave升级为新的master,而不影响用户的正常使用。
12 负载均衡
如果我们的系统部署到了多台服务器节点。那么哪些用户的请求,访问节点a,哪些用户的请求,访问节点b,哪些用户的请求,访问节点c?
我们需要某种机制,将用户的请求,转发到具体的服务器节点上。
这就需要使用负载均衡
机制了。
在linux下有Nginx
、LVS
、Haproxy
等服务可以提供负载均衡服务。
在SpringCloud微服务架构中,大部分使用的负载均衡组件就是Ribbon
、OpenFegin
或SpringCloud Loadbalancer
。
硬件方面,可以使用F5
实现负载均衡。它可以基于交换机实现负载均衡,性能更好,但是价格更贵一些。
常用的负载均衡策略有:
-
轮询
:每个请求按时间顺序逐一分配到不同的服务器节点,如果服务器节点down掉,能自动剔除。 -
weight权重
:weight代表权重默认为1,权重越高,服务器节点被分配到的概率越大。weight和访问比率成正比,用于服务器节点性能不均的情况。 -
ip hash
:每个请求按访问ip的hash结果分配, 这样每个访客固定访问同一个服务器节点,它是解诀Session共享的问题的解决方案之一。 -
最少连接数
:把请求转发给连接数较少的服务器节点。轮询算法是把请求平均的转发给各个服务器节点,使它们的负载大致相同;但有些请求占用的时间很长,会导致其所在的服务器节点负载较高。这时least_conn方式就可以达到更好的负载均衡效果。 -
最短响应时间
:按服务器节点的响应时间来分配请求,响应时间短的服务器节点优先被分配。
当然还有其他的策略,在这里就不给大家一一介绍了。
13 限流
对于高并发系统,为了保证系统的稳定性,需要对用户的请求量做限流
。
特别是秒杀系统中,如果不做任何限制,绝大部分商品可能是被机器抢到,而非正常的用户,有点不太公平。
所以,我们有必要识别这些非法请求,做一些限制。那么,我们该如何现在这些非法请求呢?
目前有两种常用的限流方式:
- 基于nginx限流
- 基于redis限流
13.1 对同一用户限流
为了防止某个用户,请求接口次数过于频繁,可以只针对该用户做限制。
限制同一个用户id,比如每分钟只能请求5次接口。
13.2 对同一ip限流
有时候只对某个用户限流是不够的,有些高手可以模拟多个用户请求,这种nginx就没法识别了。
这时需要加同一ip限流功能。
限制同一个ip,比如每分钟只能请求5次接口。
但这种限流方式可能会有误杀的情况,比如同一个公司或网吧的出口ip是相同的,如果里面有多个正常用户同时发起请求,有些用户可能会被限制住。
13.3 对接口限流
别以为限制了用户和ip就万事大吉,有些高手甚至可以使用代理,每次都请求都换一个ip。
这时可以限制请求的接口总次数。
在高并发场景下,这种限制对于系统的稳定性是非常有必要的。但可能由于有些非法请求次数太多,达到了该接口的请求上限,而影响其他的正常用户访问该接口。看起来有点得不偿失。
13.4 加验证码
相对于上面三种方式,加验证码的方式可能更精准一些,同样能限制用户的访问频次,但好处是不会存在误杀的情况。
通常情况下,用户在请求之前,需要先输入验证码。用户发起请求之后,服务端会去校验该验证码是否正确。只有正确才允许进行下一步操作,否则直接返回,并且提示验证码错误。
此外,验证码一般是一次性的,同一个验证码只允许使用一次,不允许重复使用。
普通验证码,由于生成的数字或者图案比较简单,可能会被破解。优点是生成速度比较快,缺点是有安全隐患。
还有一个验证码叫做:移动滑块
,它生成速度比较慢,但比较安全,是目前各大互联网公司的首选。
14 服务降级
前面已经说过,对于高并发系统,为了保证系统的稳定性,需要做限流。
但光做限流还不够。
我们需要合理利用服务器资源,保留核心的功能,将部分非核心的功能,我们可以选择屏蔽或者下线掉。
我们需要做服务降级
。
我们在设计高并发系统时,可以预留一些服务降级的开关。
比如在秒杀系统中,核心的功能是商品的秒杀,对于商品的评论功能,可以暂时屏蔽掉。
在服务端的分布式配置中心,比如:apollo中,可以增加一个开关,配置是否展示评论功能,默认是true。
前端页面通过服务器的接口,获取到该配置参数。
如果需要暂时屏蔽商品评论功能,可以将apollo中的参数设置成false。
此外,我们在设计高并发系统时,还可以预留一些兜底方案。
比如某个分类查询接口,要从redis中获取分类数据,返回给用户。但如果那一条redis挂了,则查询数据失败。
这时候,我们可以增加一个兜底方案。
如果从redis中获取不到数据,则从apollo中获取一份默认的分类数据。
目前使用较多的熔断降级中间件是:Hystrix
和 Sentinel
。
- Hystrix是Netflix开源的熔断降级组件。
- Sentinel是阿里中间件团队开源的一款不光具有熔断降级功能,同时还支持系统负载保护的组件。
二者的区别如下图所示:
15 故障转移
在高并发的系统当中,同一时间有大量的用户访问系统。
如果某一个应用服务器节点处于假死状态,比如CPU使用率100%了,用户的请求没办法及时处理,导致大量用户出现请求超时的情况。
如果这种情况下,不做任何处理,可能会影响系统中部分用户的正常使用。
这时我们需要建立故障转移
机制。
当检测到经常接口超时,或者CPU打满,或者内存溢出的情况,能够自动重启那台服务器节点上的应用。
在SpringCloud微服务当中,可以使用Ribbon
做负载均衡器。
Ribbon是Spring Cloud中的一个负载均衡器组件,它可以检测服务的可用性,并根据一定规则将请求分发至不同的服务节点。在使用Ribbon时,需要注意以下几个方面:
- 设置请求超时时间,当请求超时时,Ribbon会自动将请求转发到其他可用的服务上。
- 设置服务的健康检查,Ribbon会自动检测服务的可用性,并将请求转发至可用的服务上。
此外,还需要使用Hystrix
做熔断处理。
Hystrix是SpringCloud中的一个熔断器组件,它可以自动地监测所有通过它调用的服务,并在服务出现故障时自动切换到备用服务。在使用Hystrix时,需要注意以下几个方面:
- 设置断路器的阈值,当故障率超过一定阈值后,断路器会自动切换到备用服务上。
- 设置服务的超时时间,如果服务在指定的时间内无法返回结果,断路器会自动切换到备用服务上。到其他的能够正常使用的服务器节点上。
16 异地多活
有些高并发系统,为了保证系统的稳定性,不只部署在一个机房当中。
为了防止机房断电,或者某些不可逆的因素,比如:发生地震,导致机房挂了。
需要把系统部署到多个机房。
我们之前的游戏登录系统,就部署到了深圳、天津和成都,这三个机房。
这三个机房都有用户的流量,其中深圳机房占了40%,天津机房占了30%,成都机房占了30%。
如果其中的某个机房突然挂了,流量会被自动分配到另外两个机房当中,不会影响用户的正常使用。
这就需要使用异地多活
架构了。
用户请求先经过第三方的DNS服务器解析,然后该用户请求到达路由服务器,部署在云服务器上。
路由服务器,根据一定的算法,会将该用户请求分配到具体的机房。
异地多活的难度是多个机房需要做数据同步,如何保证数据的一致性?
17 压测
高并发系统,在上线之前,必须要做的一件事是做压力测试
。
我们先要预估一下生产环境的请求量,然后对系统做压力测试,之后评估系统需要部署多少个服务器节点。
比如预估有10000的qps,一个服务器节点最大支持1000pqs,这样我们需要部署10个服务器节点。
但假如只部署10个服务器节点,万一突增了一些新的用户请求,服务器可能会扛不住压力。
因此,部署的服务器节点,需要把预估用户请求量的多一些,比如:按3倍的用户请求量来计算。
这样我们需要部署30个服务器节点。
压力测试的结果跟环境有关,在dev环境或者test环境,只能压测一个大概的趋势。
想要更真实的数据,我们需要在pre环境,或者跟生产环境相同配置的专门的压测环境中,进行压力测试。
目前市面上做压力测试的工具有很多,比如开源的有:Jemter、LoaderRunnder、Locust等等。
收费的有:阿里自研的云压测工具PTS。
18 监控
为了出现系统或者SQL问题时,能够让我们及时发现,我们需要对系统做监控。
目前业界使用比较多的开源监控系统是:Prometheus
。
它提供了 监控
和 预警
的功能。
架构图如下:
我们可以用它监控如下信息:
- 接口响应时间
- 调用第三方服务耗时
- 慢查询sql耗时
- cpu使用情况
- 内存使用情况
- 磁盘使用情况
- 数据库使用情况
等等。。。
它的界面大概长这样子:
可以看到mysql当前qps,活跃线程数,连接数,缓存池的大小等信息。
如果发现数据量连接池占用太多,对接口的性能肯定会有影响。
这时可能是代码中开启了连接忘了关,或者并发量太大了导致的,需要做进一步排查和系统优化。
截图中只是它一小部分功能,如果你想了解更多功能,可以访问Prometheus的官网:https://prometheus.io/
其实,高并发的系统中,还需要考虑安全问题,比如:
- 遇到用户不断变化ip刷接口怎办?
- 遇到用户大量访问缓存中不存在的数据,导致缓存雪崩怎么办?
- 如果用户发起ddos攻击怎么办?
- 用户并发量突增,导致服务器扛不住了,如何动态扩容?
文章转载自公众号: 苏三说技术