
AI菜谱一步直达服务:基于鸿蒙跨端技术的智能厨房解决方案 原创
AI菜谱一步直达服务:基于鸿蒙跨端技术的智能厨房解决方案
系统概述
AI菜谱一步直达服务利用手机摄像头识别冰箱内食材,通过鸿蒙分布式技术协同多设备,实现食材识别、菜谱推荐、烹饪指导的一站式服务。该系统创新性地将计算机视觉与知识图谱技术相结合,打造智能化的厨房体验。
系统架构与核心技术
多设备协作流程:
手机:食材拍照识别
智慧屏:展示推荐菜谱和烹饪视频
智能音箱:语音指导烹饪步骤
关键技术点:
多模态物体检测(YOLOv5+CLIP)
食材-菜谱知识图谱
跨设备任务调度
分布式状态同步
代码实现
分布式服务管理(核心模块)
public class RecipeDistributedService extends Ability {
private static final String TAG = “RecipeService”;
private DistributedDataManager dataManager;
private KnowledgeGraph kg;
@Override
public void onStart(Intent intent) {
super.onStart(intent);
initDistributedEnv();
loadKnowledgeGraph();
private void initDistributedEnv() {
// 初始化分布式能力
dataManager = DistributedDataManager.getInstance(this);
// 注册数据变化监听
dataManager.registerDataChangeListener(new DataChangeListener() {
@Override
public void onDataChanged(String key, String value) {
if (key.equals("ingredients_detected")) {
processIngredients(value);
else if (key.equals(“recipe_selected”)) {
dispatchCookingTask(value);
}
});
private void loadKnowledgeGraph() {
// 加载预构建的食材-菜谱知识图谱
kg = new KnowledgeGraph(this);
kg.loadFromAsset("recipe_kg.bin");
private void processIngredients(String ingredientsJson) {
// 解析识别到的食材
Ingredient[] ingredients = new Gson().fromJson(
ingredientsJson, Ingredient[].class);
// 查询知识图谱获取推荐菜谱
List<Recipe> recipes = kg.queryRecipes(ingredients);
// 同步到智慧屏展示
syncToSmartScreen(recipes);
private void syncToSmartScreen(List<Recipe> recipes) {
String json = new Gson().toJson(recipes);
dataManager.putString("recommended_recipes", json);
private void dispatchCookingTask(String recipeJson) {
// 解析选定的菜谱
Recipe recipe = new Gson().fromJson(recipeJson, Recipe.class);
// 分配任务到各设备
dataManager.putString("cooking_steps", recipe.getStepsJson());
dataManager.putString("video_guide", recipe.getVideoUrl());
}
手机端食材识别模块
public class IngredientDetectionAbility extends Ability {
private static final String TAG = “IngredientDetection”;
private DistributedDataManager dataManager;
private FoodDetectionModel detectionModel;
@Override
public void onStart(Intent intent) {
super.onStart(intent);
initDetectionModel();
setupCamera();
private void initDetectionModel() {
// 加载轻量化食材检测模型
detectionModel = new FoodDetectionModel(this);
detectionModel.loadModel("yolov5s_food.tflite");
private void setupCamera() {
SurfaceProvider provider = new SurfaceProvider(this);
provider.setSurfaceCallback(new SurfaceCallback() {
@Override
public void surfaceCreated(Surface surface) {
CameraConfig config = new CameraConfig.Builder()
.setSurface(surface)
.setFrameCallback(frame -> {
Bitmap bitmap = frameToBitmap(frame);
detectIngredients(bitmap);
})
.build();
CameraKit.getInstance().openCamera(config);
});
private void detectIngredients(Bitmap bitmap) {
// 执行食材检测
DetectionResult[] results = detectionModel.detect(bitmap);
// 过滤食材结果(置信度>0.7)
List<Ingredient> ingredients = Arrays.stream(results)
.filter(r -> r.getConfidence() > 0.7)
.map(r -> new Ingredient(
r.getLabel(),
r.getConfidence(),
estimateQuantity(r.getBoundingBox())
))
.collect(Collectors.toList());
if (!ingredients.isEmpty()) {
// 同步到分布式服务
String json = new Gson().toJson(ingredients);
dataManager.putString("ingredients_detected", json);
}
private float estimateQuantity(Rect boundingBox) {
// 基于边界框大小估算食材数量(简化实现)
return boundingBox.width() * boundingBox.height() / 10000f;
}
智慧屏菜谱展示模块
public class RecipeDisplayAbility extends Ability {
private DistributedDataManager dataManager;
private MediaPlayer videoPlayer;
@Override
public void onStart(Intent intent) {
super.onStart(intent);
initUIComponents();
initDistributedListener();
private void initDistributedListener() {
dataManager = DistributedDataManager.getInstance(this);
dataManager.registerDataChangeListener(new DataChangeListener() {
@Override
public void onDataChanged(String key, String value) {
if (key.equals("recommended_recipes")) {
showRecipeList(value);
else if (key.equals(“video_guide”)) {
playGuideVideo(value);
}
});
private void showRecipeList(String recipesJson) {
Recipe[] recipes = new Gson().fromJson(recipesJson, Recipe[].class);
getUITaskDispatcher().asyncDispatch(() -> {
ListContainer list = findComponentById(ResourceTable.Id_recipe_list);
RecipeItemProvider provider = new RecipeItemProvider(recipes);
list.setItemProvider(provider);
// 设置点击监听
list.setItemClickedListener((listContainer, component, position, id) -> {
selectRecipe(recipes[position]);
});
});
private void selectRecipe(Recipe recipe) {
// 通知系统用户选择了某个菜谱
String json = new Gson().toJson(recipe);
dataManager.putString("recipe_selected", json);
private void playGuideVideo(String videoUrl) {
videoPlayer.setSource(videoUrl);
videoPlayer.prepare();
videoPlayer.play();
}
智能音箱烹饪指导模块
public class CookingGuideAbility extends Ability {
private DistributedDataManager dataManager;
private TtsEngine ttsEngine;
private int currentStep = 0;
@Override
public void onStart(Intent intent) {
super.onStart(intent);
initTtsEngine();
initDistributedListener();
private void initDistributedListener() {
dataManager = DistributedDataManager.getInstance(this);
dataManager.registerDataChangeListener(new DataChangeListener() {
@Override
public void onDataChanged(String key, String value) {
if (key.equals("cooking_steps")) {
prepareGuidance(value);
}
});
private void prepareGuidance(String stepsJson) {
CookingStep[] steps = new Gson().fromJson(stepsJson, CookingStep[].class);
// 开始逐步指导
guideStepByStep(steps);
private void guideStepByStep(CookingStep[] steps) {
if (currentStep < steps.length) {
CookingStep step = steps[currentStep];
// 语音播报当前步骤
ttsEngine.speak(step.getDescription(), TtsEngine.QUEUE_FLUSH, null);
// 设置定时器进入下一步
Timer timer = new Timer();
timer.schedule(new TimerTask() {
@Override
public void run() {
currentStep++;
guideStepByStep(steps);
}, step.getDuration() * 1000);
}
关键技术解析
多模态食材识别:
# Python端的融合识别算法(部署为HarmonyOS原子化服务)
def enhanced_food_detection(image):
# 使用YOLOv5检测食材边界框
detections = yolov5_model(image)
# 使用CLIP模型验证和细化分类
clip_features = clip_model.encode_image(image)
for det in detections:
text_features = clip_model.encode_text(f"a photo of {det.label}")
similarity = cosine_similarity(clip_features, text_features)
if similarity < 0.3: # 验证阈值
det.label = "unknown"
return detections
知识图谱查询优化:
// 知识图谱查询实现
public List<Recipe> queryRecipes(Ingredient[] ingredients) {
// 提取食材名称
String[] names = Arrays.stream(ingredients)
.map(Ingredient::getName)
.toArray(String[]::new);
// 查询包含任意3种食材的菜谱
String query = "MATCH (r:Recipe)-[:CONTAINS]->(i:Ingredient) " +
"WHERE i.name IN $names " +
"WITH r, COUNT(i) AS matches " +
"WHERE matches >= 3 " +
"RETURN r ORDER BY matches DESC LIMIT 5";
return neo4jClient.query(query, Map.of("names", names));
跨设备同步优化:
// 基于网络状况的自适应同步策略
public void optimizeDataSync() {
NetworkState state = NetworkManager.getCurrentState();
// 根据网络质量调整同步策略
SyncPolicy policy = new SyncPolicy()
.setCompression(state != NetworkState.EXCELLENT)
.setPriority(SyncPriority.HIGH)
.setRetryCount(state == NetworkState.POOR ? 3 : 1);
dataManager.setSyncPolicy("recommended_recipes", policy);
与游戏昵称同步技术的关联创新
状态同步机制:
借鉴游戏中的玩家状态同步策略,实现烹饪步骤的跨设备同步
采用类似的分布式数据版本控制保证各设备状态一致
设备角色分配:
// 类似游戏中的角色分配逻辑
public void assignDeviceRoles() {
List<DeviceInfo> devices = DeviceManager.getConnectedDevices();
devices.forEach(device -> {
String role = switch(device.getType()) {
case PHONE -> "detector";
case TV -> "display";
case SPEAKER -> "guide";
default -> "viewer";
};
dataManager.putString(device.getId(), "assigned_role", role);
});
实时性保障:
关键数据(如步骤切换)采用即时同步
非关键数据(如菜谱图片)采用后台异步同步
系统特色功能
智能替代推荐:
public List<Ingredient> findSubstitutes(Ingredient ingredient) {
// 在知识图谱中查询可替代食材
return kg.query("MATCH (i1:Ingredient {name: $name})-[:CAN_REPLACE]->(i2) " +
"RETURN i2 ORDER BY i2.similarity DESC LIMIT 3",
Map.of("name", ingredient.getName()));
营养分析:
def analyze_nutrition(recipe):
total_calories = sum(ingredient.calories for ingredient in recipe.ingredients)
nutrition_tags = []
if total_calories < 400:
nutrition_tags.append("低卡")
if any(i for i in recipe.ingredients if i.is_high_protein):
nutrition_tags.append("高蛋白")
return NutritionInfo(total_calories, nutrition_tags)
多用户协作:
支持多个手机同时扫描不同区域的食材
合并所有用户的检测结果生成综合推荐
该AI菜谱一步直达服务系统充分展现了鸿蒙分布式技术的优势,将原本分散的厨房设备整合为智能协同的整体,为智能家居场景提供了创新解决方案。通过借鉴游戏中的状态同步和角色分配机制,实现了厨房场景下的无缝多设备协作体验。
