
端云AI模型结果比对器设计与实现 原创
端云AI模型结果比对器设计与实现
一、项目概述
基于HarmonyOS 5异构计算调度能力构建的端云AI模型结果比对系统,专门用于验证同一AI模型在端侧和云侧执行的推理结果差异。该系统借鉴《鸿蒙跨端U同步》中游戏场景的多设备数据同步机制,确保AI推理结果在不同计算环境中的一致性,为模型部署提供质量保障。
二、核心架构设计
±--------------------+
模型输入生成器
(Input Generator)
±---------±---------+
±---------v----------+ ±--------------------+
异构计算调度器 <—> 云侧推理服务
(Hetero Scheduler) (Cloud Inference)
±---------±---------+ ±--------------------+
±---------v----------+
结果比对引擎
(Result Comparator)
±--------------------+
三、异构计算调度实现
// 异构计算调度服务
public class HeterogeneousScheduler {
private static final String TAG = “HeteroScheduler”;
private Context context;
private ExecutorService localExecutor;
private CloudInferenceClient cloudClient;
public HeterogeneousScheduler(Context context) {
this.context = context;
this.localExecutor = Executors.newSingleThreadExecutor();
this.cloudClient = new CloudInferenceClient();
// 调度端云并行推理
public void scheduleDualInference(ModelInput input, InferenceCallback callback) {
// 1. 在端侧设备上启动推理
CompletableFuture<ModelOutput> localFuture = CompletableFuture.supplyAsync(() -> {
return runLocalInference(input);
}, localExecutor);
// 2. 在云侧并行启动推理
CompletableFuture<ModelOutput> cloudFuture = CompletableFuture.supplyAsync(() -> {
return runCloudInference(input);
});
// 3. 合并结果
CompletableFuture<Void> combinedFuture = CompletableFuture.allOf(localFuture, cloudFuture);
combinedFuture.thenRun(() -> {
try {
ModelOutput localOutput = localFuture.get();
ModelOutput cloudOutput = cloudFuture.get();
callback.onInferenceComplete(localOutput, cloudOutput);
catch (Exception e) {
callback.onError(e);
});
// 执行端侧推理
private ModelOutput runLocalInference(ModelInput input) {
long startTime = System.currentTimeMillis();
// 使用HarmonyOS AI框架执行推理
AiModel model = new AiModel(context, "model.hdf");
ModelOutput output = model.run(input);
long endTime = System.currentTimeMillis();
output.setInferenceTime(endTime - startTime);
output.setComputeLocation("Device");
return output;
// 执行云侧推理
private ModelOutput runCloudInference(ModelInput input) {
long startTime = System.currentTimeMillis();
// 调用云端推理服务
ModelOutput output = cloudClient.infer("model_v1", input);
long endTime = System.currentTimeMillis();
output.setInferenceTime(endTime - startTime);
output.setComputeLocation("Cloud");
return output;
public interface InferenceCallback {
void onInferenceComplete(ModelOutput localOutput, ModelOutput cloudOutput);
void onError(Exception e);
}
四、结果比对引擎实现
public class ResultComparator {
private static final float FLOAT_TOLERANCE = 0.0001f;
// 比对分类模型结果
public ComparisonResult compareClassificationOutputs(ModelOutput local, ModelOutput cloud) {
ComparisonResult result = new ComparisonResult();
// 比对top1类别
String localTop1 = local.getTopClass();
String cloudTop1 = cloud.getTopClass();
result.setTopClassMatch(localTop1.equals(cloudTop1));
// 比对top1概率
float localProb = local.getTopProbability();
float cloudProb = cloud.getTopProbability();
result.setProbabilityDiff(Math.abs(localProb - cloudProb));
// 比对类别分布
Map<String, Float> localProbs = local.getClassProbabilities();
Map<String, Float> cloudProbs = cloud.getClassProbabilities();
result.setDistributionSimilarity(
calculateDistributionSimilarity(localProbs, cloudProbs)
);
return result;
// 比对目标检测模型结果
public ComparisonResult compareDetectionOutputs(ModelOutput local, ModelOutput cloud) {
ComparisonResult result = new ComparisonResult();
// 比对检测框数量
List<BoundingBox> localBoxes = local.getDetectionBoxes();
List<BoundingBox> cloudBoxes = cloud.getDetectionBoxes();
result.setDetectionCountDiff(Math.abs(localBoxes.size() - cloudBoxes.size()));
// 比对IOU (Intersection over Union)
if (!localBoxes.isEmpty() && !cloudBoxes.isEmpty()) {
result.setAverageIou(calculateAverageIou(localBoxes, cloudBoxes));
return result;
// 计算两个概率分布的相似度
private float calculateDistributionSimilarity(
Map<String, Float> dist1, Map<String, Float> dist2) {
float similarity = 0f;
Set<String> allClasses = new HashSet<>();
allClasses.addAll(dist1.keySet());
allClasses.addAll(dist2.keySet());
for (String cls : allClasses) {
float p1 = dist1.getOrDefault(cls, 0f);
float p2 = dist2.getOrDefault(cls, 0f);
similarity += Math.min(p1, p2);
return similarity;
// 计算平均IOU
private float calculateAverageIou(List<BoundingBox> boxes1, List<BoundingBox> boxes2) {
float totalIou = 0f;
int count = 0;
for (BoundingBox box1 : boxes1) {
for (BoundingBox box2 : boxes2) {
if (box1.getClassLabel().equals(box2.getClassLabel())) {
totalIou += calculateIou(box1, box2);
count++;
}
return count > 0 ? totalIou / count : 0f;
// 计算两个检测框的IOU
private float calculateIou(BoundingBox box1, BoundingBox box2) {
// 计算交集区域坐标
float x1 = Math.max(box1.getLeft(), box2.getLeft());
float y1 = Math.max(box1.getTop(), box2.getTop());
float x2 = Math.min(box1.getRight(), box2.getRight());
float y2 = Math.min(box1.getBottom(), box2.getBottom());
// 计算交集面积
float interArea = Math.max(0, x2 - x1) * Math.max(0, y2 - y1);
// 计算并集面积
float box1Area = box1.getWidth() * box1.getHeight();
float box2Area = box2.getWidth() * box2.getHeight();
float unionArea = box1Area + box2Area - interArea;
return interArea / unionArea;
// 比对原始张量数据
public boolean compareTensorOutputs(Tensor localTensor, Tensor cloudTensor) {
if (!Arrays.equals(localTensor.shape(), cloudTensor.shape())) {
return false;
float[] localData = localTensor.getData();
float[] cloudData = cloudTensor.getData();
for (int i = 0; i < localData.length; i++) {
if (Math.abs(localData[i] - cloudData[i]) > FLOAT_TOLERANCE) {
return false;
}
return true;
}
五、测试框架实现
模型测试编排器
public class ModelTestOrchestrator {
private HeterogeneousScheduler scheduler;
private ResultComparator comparator;
private TestReportGenerator reportGenerator;
public ModelTestOrchestrator(Context context) {
this.scheduler = new HeterogeneousScheduler(context);
this.comparator = new ResultComparator();
this.reportGenerator = new TestReportGenerator();
// 执行端云一致性测试
public void runConsistencyTest(ModelInput input, TestCallback callback) {
scheduler.scheduleDualInference(input, new HeterogeneousScheduler.InferenceCallback() {
@Override
public void onInferenceComplete(ModelOutput localOutput, ModelOutput cloudOutput) {
// 比对结果
ComparisonResult result = comparator.compareClassificationOutputs(
localOutput, cloudOutput
);
// 生成测试报告
TestReport report = reportGenerator.generateReport(
input, localOutput, cloudOutput, result
);
callback.onTestComplete(report);
@Override
public void onError(Exception e) {
callback.onError(e);
});
// 批量测试
public void runBatchTest(List<ModelInput> inputs, BatchTestCallback callback) {
List<TestReport> reports = new ArrayList<>();
AtomicInteger counter = new AtomicInteger(0);
for (ModelInput input : inputs) {
runConsistencyTest(input, new TestCallback() {
@Override
public void onTestComplete(TestReport report) {
reports.add(report);
if (counter.incrementAndGet() == inputs.size()) {
callback.onBatchComplete(reports);
}
@Override
public void onError(Exception e) {
counter.incrementAndGet();
// 记录错误报告
reports.add(TestReport.createErrorReport(input, e));
if (counter.get() == inputs.size()) {
callback.onBatchComplete(reports);
}
});
}
public interface TestCallback {
void onTestComplete(TestReport report);
void onError(Exception e);
public interface BatchTestCallback {
void onBatchComplete(List<TestReport> reports);
}
测试报告生成器
public class TestReportGenerator {
private static final DecimalFormat df = new DecimalFormat(“0.0000”);
public TestReport generateReport(ModelInput input,
ModelOutput localOutput,
ModelOutput cloudOutput,
ComparisonResult result) {
TestReport report = new TestReport();
// 基本信息
report.setTestTime(new Date());
report.setInputSummary(input.getSummary());
// 性能数据
report.setLocalInferenceTime(localOutput.getInferenceTime());
report.setCloudInferenceTime(cloudOutput.getInferenceTime());
// 比对结果
report.setTopClassMatch(result.isTopClassMatch());
report.setProbabilityDiff(result.getProbabilityDiff());
report.setDistributionSimilarity(result.getDistributionSimilarity());
if (localOutput.getDetectionBoxes() != null) {
report.setDetectionCountDiff(result.getDetectionCountDiff());
report.setAverageIou(result.getAverageIou());
// 生成可读结果摘要
String summary = buildResultSummary(localOutput, cloudOutput, result);
report.setResultSummary(summary);
return report;
private String buildResultSummary(ModelOutput local, ModelOutput cloud,
ComparisonResult result) {
StringBuilder sb = new StringBuilder();
sb.append("端侧推理时间: ").append(local.getInferenceTime()).append("ms\n");
sb.append("云侧推理时间: ").append(cloud.getInferenceTime()).append("ms\n\n");
if (local.getTopClass() != null) {
sb.append("分类结果比对:\n");
sb.append(" 端侧Top1: ").append(local.getTopClass())
.append(" (").append(df.format(local.getTopProbability())).append(")\n");
sb.append(" 云侧Top1: ").append(cloud.getTopClass())
.append(" (").append(df.format(cloud.getTopProbability())).append(")\n");
sb.append(" 是否匹配: ").append(result.isTopClassMatch() ? "✓" : "✗").append("\n");
sb.append(" 概率差值: ").append(df.format(result.getProbabilityDiff())).append("\n");
sb.append(" 分布相似度: ").append(df.format(result.getDistributionSimilarity())).append("\n\n");
if (local.getDetectionBoxes() != null && !local.getDetectionBoxes().isEmpty()) {
sb.append("检测结果比对:\n");
sb.append(" 端侧检测数: ").append(local.getDetectionBoxes().size()).append("\n");
sb.append(" 云侧检测数: ").append(cloud.getDetectionBoxes().size()).append("\n");
sb.append(" 数量差异: ").append(result.getDetectionCountDiff()).append("\n");
sb.append(" 平均IOU: ").append(df.format(result.getAverageIou())).append("\n");
return sb.toString();
}
六、HarmonyOS 5集成示例
public class ModelTestAbilitySlice extends AbilitySlice {
private ModelTestOrchestrator orchestrator;
private Text resultDisplay;
@Override
public void onStart(Intent intent) {
super.onStart(intent);
setUIContent(ResourceTable.Layout_model_test_layout);
// 初始化组件
resultDisplay = (Text) findComponentById(ResourceTable.Id_result_display);
orchestrator = new ModelTestOrchestrator(this);
// 绑定测试按钮
Button testButton = (Button) findComponentById(ResourceTable.Id_run_test_button);
testButton.setClickedListener(listener -> runSampleTest());
private void runSampleTest() {
// 准备测试输入
ModelInput input = prepareTestInput();
// 执行测试
orchestrator.runConsistencyTest(input, new ModelTestOrchestrator.TestCallback() {
@Override
public void onTestComplete(TestReport report) {
getUITaskDispatcher().asyncDispatch(() -> {
resultDisplay.setText(report.getResultSummary());
});
@Override
public void onError(Exception e) {
getUITaskDispatcher().asyncDispatch(() -> {
resultDisplay.setText("测试失败: " + e.getMessage());
});
});
private ModelInput prepareTestInput() {
// 从资源加载测试图像
ImageSource imageSource = new ImageSource(
getResourceManager(),
ResourceTable.Media_test_image
);
// 创建模型输入
return new ModelInput.Builder()
.setImage(imageSource)
.setNormalizeParams(255f, new float[]{0.485f, 0.456f, 0.406f},
new float[]{0.229f, 0.224f, 0.225f})
.build();
}
七、技术创新点
异构计算调度:充分利用HarmonyOS 5的异构计算能力
全面比对指标:支持分类、检测等多种模型结果的深度比对
自动化测试:一键执行端云一致性验证
可视化报告:直观展示差异点和性能数据
批量测试:支持大规模测试用例自动执行
八、总结
本端云AI模型结果比对器基于HarmonyOS 5异构计算能力,实现了以下核心价值:
质量保障:确保端云两侧模型推理结果一致
性能对比:直观展示不同计算环境的执行效率差异
部署验证:为模型量化、剪枝等优化手段提供验证工具
持续集成:可与CI/CD流程集成,实现自动化模型测试
系统借鉴了《鸿蒙跨端U同步》中的数据同步验证机制,将经过验证的比对策略应用于AI模型质量保障领域。未来可结合差异分析算法自动定位模型问题层,并与模型训练平台集成,形成完整的模型开发-部署-验证闭环。
