C++的线程池是什么,应该怎么实现

laokugonggao
发布于 2020-9-3 18:08
浏览
0收藏

在开发过程中,我经常遇到使用线程池的需求,但是我发现C ++中线程池的第三方库相对较少,因此我计划自己构建一个。 链接地址文章附在最后。 目前仅是第一个版本,可能存在很多问题,希望您能纠正我的问题。

 

线程池都需要什么功能?
个人认为线程池需要支持以下几个基本功能

核心线程数(core_threads):线程池中拥有的最少线程个数,初始化时就会创建好的线程,常驻于线程池。
最大线程个数(max_threads):线程池中拥有的最大线程个数,max_threads>=core_threads,当任务的个数太多线程池执行不过来时,内部就会创建更多的线程用于执行更多的任务,内部线程数不会超过max_threads,多创建出来的线程在一段时间内没有执行任务则会自动被回收掉,最终线程个数保持在核心线程数。
超时时间(time_out):如上所述,多创建出来的线程在time_out时间内没有执行任务就会被回收。
可获取当前线程池中线程的总个数。
可获取当前线程池中空闲线程的个数。
开启线程池功能的开关。
关闭线程池功能的开关,可以选择是否立即关闭,立即关闭线程池时,当前线程池里缓存的任务不会被执行。
如何实现线程池?
下面是自己实现的线程池逻辑

线程池中主要的数据结构
链表或者数组:用于存储线程池中的线程。
队列:用于存储需要放入线程池中执行的任务。
条件变量:当有任务需要执行时,用于通知正在等待的线程从任务队列中取出任务执行。代码如下:

class ThreadPool {
 public:
  using PoolSeconds = std::chrono::seconds;

  /** 线程池的配置
   * core_threads: 核心线程个数,线程池中最少拥有的线程个数,初始化就会创建好的线程,常驻于线程池
   *
   * max_threads: >=core_threads,当任务的个数太多线程池执行不过来时,
   * 内部就会创建更多的线程用于执行更多的任务,内部线程数不会超过max_threads
   *
   * max_task_size: 内部允许存储的最大任务个数,暂时没有使用
   *
   * time_out: Cache线程的超时时间,Cache线程指的是max_threads-core_threads的线程,
   * 当time_out时间内没有执行任务,此线程就会被自动回收
   */
  struct ThreadPoolConfig {
      int core_threads;
      int max_threads;
      int max_task_size;
      PoolSeconds time_out;
  };

  /**
   * 线程的状态:有等待、运行、停止
   */
  enum class ThreadState { kInit = 0, kWaiting = 1, kRunning = 2, kStop = 3 };

  /**
   * 线程的种类标识:标志该线程是核心线程还是Cache线程,Cache是内部为了执行更多任务临时创建出来的
   */
  enum class ThreadFlag { kInit = 0, kCore = 1, kCache = 2 };

  using ThreadPtr = std::shared_ptr<std::thread>;
  using ThreadId = std::atomic<int>;
  using ThreadStateAtomic = std::atomic<ThreadState>;
  using ThreadFlagAtomic = std::atomic<ThreadFlag>;

  /**
   * 线程池中线程存在的基本单位,每个线程都有个自定义的ID,有线程种类标识和状态
   */
  struct ThreadWrapper {
      ThreadPtr ptr;
      ThreadId id;
      ThreadFlagAtomic flag;
      ThreadStateAtomic state;

      ThreadWrapper() {
          ptr = nullptr;
          id = 0;
          state.store(ThreadState::kInit);
      }
  };
  using ThreadWrapperPtr = std::shared_ptr<ThreadWrapper>;
  using ThreadPoolLock = std::unique_lock<std::mutex>;

 private:
  ThreadPoolConfig config_;

  std::list<ThreadWrapperPtr> worker_threads_;

  std::queue<std::function<void()>> tasks_;
  std::mutex task_mutex_;
  std::condition_variable task_cv_;

  std::atomic<int> total_function_num_;
  std::atomic<int> waiting_thread_num_;
  std::atomic<int> thread_id_; // 用于为新创建的线程分配ID

  std::atomic<bool> is_shutdown_now_;
  std::atomic<bool> is_shutdown_;
  std::atomic<bool> is_available_;
};

线程池的初始化
在构造函数中将各个成员变量都附初值,同时判断线程池的config是否合法。

ThreadPool(ThreadPoolConfig config) : config_(config) {
    this->total_function_num_.store(0);
    this->waiting_thread_num_.store(0);

    this->thread_id_.store(0);
    this->is_shutdown_.store(false);
    this->is_shutdown_now_.store(false);

    if (IsValidConfig(config_)) {
        is_available_.store(true);
    } else {
        is_available_.store(false);
    }
}

bool IsValidConfig(ThreadPoolConfig config) {
    if (config.core_threads < 1 || config.max_threads < config.core_threads || config.time_out.count() < 1) {
        return false;
    }
    return true;
}

如何开启线程池功能?
创建核心线程数个线程,常驻于线程池,等待任务的执行,线程ID由GetNextThreadId()统一分配。

// 开启线程池功能
bool Start() {
    if (!IsAvailable()) {
        return false;
    }
    int core_thread_num = config_.core_threads;
    cout << "Init thread num " << core_thread_num << endl;
    while (core_thread_num-- > 0) {
        AddThread(GetNextThreadId());
    }
    cout << "Init thread end" << endl;
    return true;
}

如何关闭线程?
这里有两个标志位,is_shutdown_now置为true表示立即关闭线程,is_shutdown置为true则表示先执行完队列里的任务再关闭线程池。

// 关掉线程池,内部还没有执行的任务会继续执行
void ShutDown() {
    ShutDown(false);
    cout << "shutdown" << endl;
}

// 执行关掉线程池,内部还没有执行的任务直接取消,不会再执行
void ShutDownNow() {
    ShutDown(true);
    cout << "shutdown now" << endl;
}

// private
void ShutDown(bool is_now) {
    if (is_available_.load()) {
        if (is_now) {
            this->is_shutdown_now_.store(true);
        } else {
            this->is_shutdown_.store(true);
        }
        this->task_cv_.notify_all();
        is_available_.store(false);
    }
}

如何为线程池添加线程?
见AddThread()函数,默认会创建Core线程,也可以选择创建Cache线程,线程内部会有一个死循环,不停的等待任务,有任务到来时就会执行,同时内部会判断是否是Cache线程,如果是Cache线程,time_out时间内没有任务执行就会自动退出循环,线程结束。这里还会检查is_shutdown和is_shutdown_now标志,根据两个标志位是否为true来判断是否结束线程。

void AddThread(int id) { AddThread(id, ThreadFlag::kCore); }

void AddThread(int id, ThreadFlag thread_flag) {
    cout << "AddThread " << id << " flag " << static_cast<int>(thread_flag) << endl;
    ThreadWrapperPtr thread_ptr = std::make_shared<ThreadWrapper>();
    thread_ptr->id.store(id);
    thread_ptr->flag.store(thread_flag);
    auto func = [this, thread_ptr]() {
        for (;;) {
            std::function<void()> task;
            {
                ThreadPoolLock lock(this->task_mutex_);
                if (thread_ptr->state.load() == ThreadState::kStop) {
                    break;
                }
                cout << "thread id " << thread_ptr->id.load() << " running start" << endl;
                thread_ptr->state.store(ThreadState::kWaiting);
                ++this->waiting_thread_num_;
                bool is_timeout = false;
                if (thread_ptr->flag.load() == ThreadFlag::kCore) {
                    this->task_cv_.wait(lock, [this, thread_ptr] {
                        return (this->is_shutdown_ || this->is_shutdown_now_ || !this->tasks_.empty() ||
                                thread_ptr->state.load() == ThreadState::kStop);
                    });
                } else {
                    this->task_cv_.wait_for(lock, this->config_.time_out, [this, thread_ptr] {
                        return (this->is_shutdown_ || this->is_shutdown_now_ || !this->tasks_.empty() ||
                                thread_ptr->state.load() == ThreadState::kStop);
                    });
                    is_timeout = !(this->is_shutdown_ || this->is_shutdown_now_ || !this->tasks_.empty() ||
                                    thread_ptr->state.load() == ThreadState::kStop);
                }
                --this->waiting_thread_num_;
                cout << "thread id " << thread_ptr->id.load() << " running wait end" << endl;

                if (is_timeout) {
                    thread_ptr->state.store(ThreadState::kStop);
                }

                if (thread_ptr->state.load() == ThreadState::kStop) {
                    cout << "thread id " << thread_ptr->id.load() << " state stop" << endl;
                    break;
                }
                if (this->is_shutdown_ && this->tasks_.empty()) {
                    cout << "thread id " << thread_ptr->id.load() << " shutdown" << endl;
                    break;
                }
                if (this->is_shutdown_now_) {
                    cout << "thread id " << thread_ptr->id.load() << " shutdown now" << endl;
                    break;
                }
                thread_ptr->state.store(ThreadState::kRunning);
                task = std::move(this->tasks_.front());
                this->tasks_.pop();
            }
            task();
        }
        cout << "thread id " << thread_ptr->id.load() << " running end" << endl;
    };
    thread_ptr->ptr = std::make_shared<std::thread>(std::move(func));
    if (thread_ptr->ptr->joinable()) {
        thread_ptr->ptr->detach();
    }
    this->worker_threads_.emplace_back(std::move(thread_ptr));
}

如何将任务放入线程池中执行?
见如下代码,将任务使用std::bind封装成std::function放入任务队列中,任务较多时内部还会判断是否有空闲线程,如果没有空闲线程,会自动创建出最多(max_threads-core_threads)个Cache线程用于执行任务。

// 放在线程池中执行函数
template <typename F, typename... Args>
auto Run(F &&f, Args &&... args) -> std::shared_ptr<std::future<std::result_of_t<F(Args...)>>> {
    if (this->is_shutdown_.load() || this->is_shutdown_now_.load() || !IsAvailable()) {
        return nullptr;
    }
    if (GetWaitingThreadSize() == 0 && GetTotalThreadSize() < config_.max_threads) {
        AddThread(GetNextThreadId(), ThreadFlag::kCache);
    }

    using return_type = std::result_of_t<F(Args...)>;
    auto task = std::make_shared<std::packaged_task<return_type()>>(
        std::bind(std::forward<F>(f), std::forward<Args>(args)...));
    total_function_num_++;

    std::future<return_type> res = task->get_future();
    {
        ThreadPoolLock lock(this->task_mutex_);
        this->tasks_.emplace([task]() { (*task)(); });
    }
    this->task_cv_.notify_one();
    return std::make_shared<std::future<std::result_of_t<F(Args...)>>>(std::move(res));
}

如何获取当前线程池中线程的总个数?
 
int GetTotalThreadSize() { return this->worker_threads_.size(); }

如何获取当前线程池中空闲线程的个数?
waiting_thread_num_值表示空闲线程的个数,该变量在线程循环内部会更新。


int GetWaitingThreadSize() { return this->waiting_thread_num_.load(); }

简单的测试代码

int main() {
    cout << "hello" << endl;
    ThreadPool pool(ThreadPool::ThreadPoolConfig{4, 5, 6, std::chrono::seconds(4)});
    pool.Start();
    std::this_thread::sleep_for(std::chrono::seconds(4));
    cout << "thread size " << pool.GetTotalThreadSize() << endl;
    std::atomic<int> index;
    index.store(0);
    std::thread t([&]() {
        for (int i = 0; i < 10; ++i) {
            pool.Run([&]() {
                cout << "function " << index.load() << endl;
                std::this_thread::sleep_for(std::chrono::seconds(4));
                index++;
            });
            // std::this_thread::sleep_for(std::chrono::seconds(2));
        }
    });
    t.detach();
    cout << "=================" << endl;

    std::this_thread::sleep_for(std::chrono::seconds(4));
    pool.Reset(ThreadPool::ThreadPoolConfig{4, 4, 6, std::chrono::seconds(4)});
    std::this_thread::sleep_for(std::chrono::seconds(4));
    cout << "thread size " << pool.GetTotalThreadSize() << endl;
    cout << "waiting size " << pool.GetWaitingThreadSize() << endl;
    cout << "---------------" << endl;
    pool.ShutDownNow();
    getchar();
    cout << "world" << endl;
    return 0;
}

完整代码
完整代码可在github中查看。https://github.com/fightingwangzq/wzq_utils/blob/master/thread/include/thread/thread_pool.h

 

分类
标签
已于2021-3-23 11:51:44修改
收藏
回复
举报
回复
    相关推荐