
鸿蒙5智能垃圾分类APP开发实战:图像识别与多设备协同 原创
鸿蒙5智能垃圾分类APP开发实战:图像识别与多设备协同
一、项目概述与架构设计
本智能垃圾分类APP基于鸿蒙5的AI能力与分布式技术实现,主要功能包括:
垃圾图像智能识别分类
分类结果多设备同步展示
垃圾分类知识库共享
多设备协同标注训练
技术架构图
┌─────────────┐ ┌─────────────┐ ┌─────────────┐
手机设备 │ │ 平板设备 │ │ 智慧屏 │
┌────────┐ │ │ ┌────────┐ │ │ ┌────────┐ │
│ 图像采集 │─┼───▶│ │ 结果展示 │ │ │ │ 数据看板 │ │
└────────┘ │ │ └────────┘ │ │ └────────┘ │
└───────┬─────┘ └───────┬─────┘ └───────┬─────┘
│ │
└─────────┬────────┴─────────┬────────┘
│
┌───────▼───────┐ ┌───────▼───────┐
分布式数据服务 │ │ AI图像识别 │
└───────────────┘ └───────────────┘
二、核心代码实现
图像识别服务封装
// TrashRecognitionService.ets
import image from ‘@ohos.multimedia.image’;
import ai from ‘@ohos.ai.image’;
export class TrashRecognitionService {
private imageReceiver: image.ImageReceiver;
private aiPlugin: ai.ImageRecognition;
async init() {
// 初始化图像接收器
this.imageReceiver = image.createImageReceiver(
640, 480,
image.ImageFormat.JPEG, 2
);
// 初始化AI插件
const config: ai.Config = {
model: 'trash_classification',
version: '1.0',
device: 'NPU'
};
this.aiPlugin = await ai.createImageRecognition(config);
async recognize(imageUri: string): Promise<TrashClassification> {
try {
const pixelMap = await image.createPixelMapFromUri(imageUri);
const input: ai.Input = {
data: pixelMap,
operation: ai.Operation.CLASSIFY
};
const result = await this.aiPlugin.run(input);
return this.parseResult(result);
catch (err) {
console.error('Recognition failed:', err);
return { category: '未知', confidence: 0 };
}
private parseResult(result: ai.Output): TrashClassification {
const topResult = result.data[0];
return {
category: this.mapCategory(topResult.label),
confidence: topResult.confidence,
timestamp: new Date().getTime()
};
private mapCategory(label: string): string {
const categories: Record<string, string> = {
'plastic': '可回收物',
'paper': '可回收物',
'kitchen': '厨余垃圾',
'battery': '有害垃圾',
'other': '其他垃圾'
};
return categories[label] || '未知';
}
分布式数据同步服务
// TrashDataSyncService.ets
import distributedData from ‘@ohos.data.distributedData’;
export class TrashDataSyncService {
private kvStore: distributedData.KVStore;
private readonly STORE_ID = ‘trash_data_store’;
async init() {
const kvManager = await distributedData.createKVManager({
bundleName: ‘com.example.trashapp’
});
this.kvStore = await kvManager.getKVStore(this.STORE_ID, {
createIfMissing: true,
autoSync: true,
kvStoreType: distributedData.KVStoreType.SINGLE_VERSION
});
async syncClassification(result: TrashClassification) {
try {
const data = {
...result,
deviceId: deviceInfo.deviceId,
imageUri: this.generateImageUri()
};
await this.kvStore.put(result_${Date.now()}, JSON.stringify(data));
catch (err) {
console.error('Sync failed:', err);
}
subscribeResults(callback: (result: SyncTrashResult) => void) {
this.kvStore.on(‘dataChange’, distributedData.SubscribeType.SUBSCRIBE_TYPE_ALL, (changes) => {
changes.forEach(change => {
if (change.key.startsWith(‘result_’)) {
const data = JSON.parse(change.value);
callback({
…data,
sourceDevice: data.deviceId
});
});
});
}
主页面实现
// TrashRecognitionPage.ets
@Entry
@Component
struct TrashRecognitionPage {
@State currentResult: TrashClassification | null = null;
@State historyResults: Array<SyncTrashResult> = [];
@State isProcessing: boolean = false;
private recognitionService = new TrashRecognitionService();
private syncService = new TrashDataSyncService();
aboutToAppear() {
this.recognitionService.init();
this.syncService.init();
this.syncService.subscribeResults(this.handleNewResult.bind(this));
build() {
Column() {
// 摄像头预览区域
CameraPreview({
onCapture: this.captureImage.bind(this)
})
// 识别结果展示
if (this.currentResult) {
RecognitionResult({
result: this.currentResult,
onSave: this.saveResult.bind(this)
})
// 历史记录
HistoryPanel({
items: this.historyResults
})
}
private async captureImage(imageUri: string) {
this.isProcessing = true;
const result = await this.recognitionService.recognize(imageUri);
this.currentResult = result;
this.isProcessing = false;
private saveResult() {
if (this.currentResult) {
this.syncService.syncClassification(this.currentResult);
}
private handleNewResult(result: SyncTrashResult) {
this.historyResults = […this.historyResults, result];
}
三、关键技术创新点
多设备协同标注训练
// TrainingService.ets
export class TrainingService {
async submitCorrection(original: SyncTrashResult, correctCategory: string) {
const trainingData = {
imageUri: original.imageUri,
originalLabel: original.category,
correctedLabel: correctCategory,
devices: [original.sourceDevice, deviceInfo.deviceId]
};
// 同步到训练数据集
await this.syncTrainingData(trainingData);
// 触发模型增量训练
if (this.shouldTriggerTraining()) {
this.startIncrementalTraining();
}
private async startIncrementalTraining() {
const config: ai.TrainingConfig = {
model: ‘trash_classification’,
method: ‘transfer_learning’,
devices: this.getTrainingDevices()
};
const trainer = await ai.createModelTrainer(config);
await trainer.start();
}
垃圾分类知识库共享
// KnowledgeBaseService.ets
export class KnowledgeBaseService {
async getDisposalGuide(category: string): Promise<DisposalGuide> {
const key = guide_${category};
const cached = await this.kvStore.get(key);
if (!cached) {
const guide = await this.fetchCloudGuide(category);
await this.kvStore.put(key, JSON.stringify(guide));
return guide;
return JSON.parse(cached);
async syncPopularCategories() {
const categories = await this.calculatePopularCategories();
await this.kvStore.put('popular_categories', JSON.stringify(categories));
}
视觉增强实现
// AugmentedRealityComponent.ets
@Component
struct ARGuideComponent {
@Prop category: string;
build() {
Stack() {
// 基础摄像头视图
CameraView()
// AR叠加层
if (this.category === '可回收物') {
Image('recycle_ar.png')
.width(100)
.height(100)
.position({ x: 0, y: 0 })
// 交互动画
if (this.showAnimation) {
LottieAnimation('bin_guide.json')
.width(200)
.height(200)
}
}
四、性能优化方案
图像预处理优化
// 图像预处理管道
private async optimizeImage(pixelMap: image.PixelMap): Promise<image.PixelMap> {
// 1. 降采样
const resized = await image.scalePixelMap(pixelMap, {
width: 256,
height: 256
});
// 2. 直方图均衡化
const equalized = await image.equalizeHistogram(resized);
// 3. 归一化
return image.normalize(equalized, {
mean: [0.485, 0.456, 0.406],
std: [0.229, 0.224, 0.225]
});
模型分级加载策略
// 根据设备能力加载不同模型
private async loadAdaptiveModel() {
const deviceClass = await this.getDeviceClass();
const modelConfig = {
‘high-end’: {
model: ‘trash_resnet50’,
precision: ‘FP16’
},
‘mid-range’: {
model: ‘trash_mobilenet’,
precision: ‘INT8’
},
‘low-end’: {
model: ‘trash_shufflenet’,
precision: ‘INT8’
};
return ai.createImageRecognition(modelConfig[deviceClass]);
数据同步压缩
// 图像数据压缩传输
private async compressImageData(uri: string): Promise<string> {
const options: image.EncodingOptions = {
format: ‘image/webp’,
quality: 80,
size: { width: 320, height: 320 }
};
const compressed = await image.compressImage(uri, options);
return compressed.uri;
五、完整示例代码
摄像头预览组件
// CameraPreview.ets
@Component
struct CameraPreview {
@State cameraId: string = ‘’;
@State isReady: boolean = false;
private cameraManager: camera.CameraManager;
build() {
Stack() {
if (this.isReady) {
// 摄像头预览画面
CameraView({
cameraId: this.cameraId,
onTakePhoto: this.onCapture
})
// 拍照按钮
Button('识别垃圾', { type: ButtonType.Circle })
.width(60)
.height(60)
.position({ x: '50%', y: '80%' })
else {
Progress()
}
.onAppear(() => this.initCamera())
private async initCamera() {
this.cameraManager = await camera.getCameraManager();
const cameras = await this.cameraManager.getSupportedCameras();
this.cameraId = cameras[0].cameraId;
this.isReady = true;
}
分类结果组件
// RecognitionResult.ets
@Component
struct RecognitionResult {
@Prop result: TrashClassification;
@State disposalGuide: DisposalGuide | null = null;
build() {
Column() {
// 分类结果
Text(this.result.category)
.fontSize(24)
.fontColor(this.getCategoryColor())
// 置信度
Text(置信度: ${(this.result.confidence * 100).toFixed(1)}%)
.fontSize(16)
// 处理指南
if (this.disposalGuide) {
DisposalGuideView({ guide: this.disposalGuide })
// 操作按钮
Row() {
Button('保存结果')
.onClick(() => this.onSave())
Button('纠错')
.margin({ left: 10 })
}
.onAppear(() => this.loadGuide())
private getCategoryColor(): Color {
const colors = {
'可回收物': Color.Blue,
'有害垃圾': Color.Red,
'厨余垃圾': Color.Green,
'其他垃圾': Color.Gray
};
return colors[this.result.category] || Color.Black;
private async loadGuide() {
this.disposalGuide = await knowledgeBase.getDisposalGuide(this.result.category);
}
六、项目部署与测试
权限配置
在module.json5中添加:
“requestPermissions”: [
“name”: “ohos.permission.CAMERA”
},
“name”: “ohos.permission.READ_MEDIA”
},
“name”: “ohos.permission.DISTRIBUTED_DATASYNC”
},
“name”: “ohos.permission.INTERNET”
]
测试方案
// 图像识别测试
describe(‘TrashRecognition’, () => {
it(‘should classify plastic bottle as recyclable’, async () => {
const service = new TrashRecognitionService();
await service.init();
const result = await service.recognize('plastic_bottle.jpg');
expect(result.category).toEqual('可回收物');
expect(result.confidence).toBeGreaterThan(0.8);
});
});
// 数据同步测试
describe(‘DataSync’, () => {
it(‘should sync classification to other devices’, async () => {
const device1 = new MockDevice(‘device1’);
const device2 = new MockDevice(‘device2’);
await device1.classify('banana_peel.jpg');
await device2.waitForSync();
expect(device2.getLatestResult().category).toEqual('厨余垃圾');
});
});
七、总结与扩展
本方案实现了:
基于鸿蒙AI能力的垃圾图像精准分类
分类结果的多设备实时同步
分布式协同标注训练机制
自适应不同设备的性能优化
扩展方向:
结合AR技术实现垃圾分类实景引导
开发垃圾投放点地图导航
集成语音交互功能
建立用户环保积分系统
鸿蒙的分布式能力与AI技术的结合,为环保类应用开发提供了全新可能。开发者可基于此项目框架,进一步探索更多智能环保场景的创新实现。
