反Deepfake认证:玩家视频社交防伪系统——集成华为MediaAI伪造检测模型

爱学习的小齐哥哥
发布于 2025-6-20 12:48
浏览
0收藏

反Deepfake认证系统 - 集成华为MediaAI伪造检测

下面是一个实现反Deepfake认证系统的完整解决方案,集成了华为MediaAI伪造检测模型,包含前端用户界面和后端服务代码。
import os
import time
import uuid
from flask import Flask, request, render_template, jsonify
import cv2
import numpy as np
import requests
from werkzeug.utils import secure_filename

app = Flask(name)
app.config[‘UPLOAD_FOLDER’] = ‘uploads’
app.config[‘MAX_CONTENT_LENGTH’] = 256 * 1024 * 1024 # 256MB
os.makedirs(app.config[‘UPLOAD_FOLDER’], exist_ok=True)

华为MediaAI API配置 (实际使用时替换为真实API)

MEDIA_AI_API_URL = “https://mediaai.huaweicloud.com/api/v1/deepfake/detect
API_KEY = “your-huawei-mediaai-api-key”

模拟华为MediaAI API检测函数(实际使用时应替换为真实API调用)

def detect_deepfake_with_huawei_mediaai(video_path):
“”"
使用华为MediaAI伪造检测模型检测视频
返回检测结果和置信度
“”"
# 实际实现中会调用真实API
# with open(video_path, ‘rb’) as video_file:
# files = {‘video’: video_file}
# headers = {‘Authorization’: f’Bearer {API_KEY}'}
# response = requests.post(MEDIA_AI_API_URL, files=files, headers=headers)
# result = response.json()

# 返回模拟结果
# 生成0-0.9之间的随机值作为置信度
confidence = round(np.random.random() * 0.9, 2)

# 随机结果,实际由API返回
return {
    "is_deepfake": np.random.random() > 0.5,
    "confidence": confidence,
    "tamper_regions": [
        {"frame": 5, "position": {"x": 100, "y": 200, "width": 50, "height": 50}},
        {"frame": 15, "position": {"x": 300, "y": 150, "width": 80, "height": 80}}
    ] if confidence > 0.4 else [],
    "audio_integrity": np.random.random() > 0.3,
    "facial_movement_score": round(np.random.random(), 2),
    "blink_rate": round(np.random.uniform(0.5, 2.0), 2)
}

def extract_video_metadata(video_path):
“”“提取视频基础元数据”“”
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
return {}

frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = cap.get(cv2.CAP_PROP_FPS)
duration = frame_count / fps if fps > 0 else 0
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))

return {
    "duration": round(duration, 2),
    "resolution": f"{width}x{height}",
    "frame_count": frame_count,
    "fps": round(fps, 1)
}

@app.route(‘/’)
def index():
“”“首页”“”
return render_template(‘index.html’)

@app.route(‘/detect’, methods=[‘POST’])
def detect_deepfake():
“”“处理Deepfake检测请求”“”
if ‘video’ not in request.files:
return jsonify({“error”: “No video file provided”}), 400

video_file = request.files['video']
if video_file.filename == '':
    return jsonify({"error": "No selected file"}), 400

# 生成唯一文件名
filename = f"{str(uuid.uuid4())}_{secure_filename(video_file.filename)}"
save_path = os.path.join(app.config['UPLOAD_FOLDER'], filename)
video_file.save(save_path)

# 提取元数据
metadata = extract_video_metadata(save_path)

# 调用华为MediaAI检测
start_time = time.time()
detection_result = detect_deepfake_with_huawei_mediaai(save_path)
processing_time = round(time.time() - start_time, 2)

# 构建响应
result = {
    "filename": filename,
    "metadata": metadata,
    "is_deepfake": detection_result["is_deepfake"],
    "confidence": detection_result["confidence"],
    "audio_integrity": detection_result["audio_integrity"],
    "facial_movement_score": detection_result["facial_movement_score"],
    "blink_rate": detection_result["blink_rate"],
    "tamper_regions": detection_result["tamper_regions"],
    "processing_time": processing_time,
    "timestamp": time.strftime("%Y-%m-%d %H:%M:%S")
}

return jsonify(result)

if name == ‘main’:
app.run(host=‘0.0.0.0’, port=5000, debug=True)

HTML模板 (templates/index.html)

<!DOCTYPE html>
<html lang=“en”>
<head>
<meta charset=“UTF-8”>
<meta name=“viewport” content=“width=device-width, initial-scale=1.0”>
<title>反Deepfake认证系统</title>
<style>
:root {
–primary: #1890ff;
–success: #52c41a;
–danger: #ff4d4f;
–warning: #faad14;
–text: #333;
–border: #d9d9d9;
–bg-light: #f5f5f5;
}

    * {
        box-sizing: border-box;
        margin: 0;
        padding: 0;
    }
    
    body {
        font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
        line-height: 1.6;
        color: var(--text);
        background-color: var(--bg-light);
        padding: 20px;
        max-width: 1200px;
        margin: 0 auto;
    }
    
    header {
        text-align: center;
        margin-bottom: 30px;
        padding: 20px;
        background: linear-gradient(135deg, #1e3c72, #2a5298);
        color: white;
        border-radius: 8px;
        box-shadow: 0 4px 12px rgba(0, 0, 0, 0.1);
    }
    
    .logo {
        font-size: 24px;
        font-weight: bold;
        display: flex;
        align-items: center;
        justify-content: center;
        gap: 10px;
    }
    
    .logo img {
        height: 40px;
    }
    
    h1 {
        font-size: 2.5rem;
        margin: 20px 0;
    }
    
    .subtitle {
        font-size: 1.2rem;
        opacity: 0.9;
        max-width: 800px;
        margin: 0 auto;
    }
    
    .card {
        background: white;
        border-radius: 8px;
        box-shadow: 0 4px 12px rgba(0, 0, 0, 0.05);
        padding: 25px;
        margin-bottom: 25px;
    }
    
    .upload-section {
        display: flex;
        flex-direction: column;
        align-items: center;
        text-align: center;
        gap: 20px;
        padding: 40px 20px;
    }
    
    .upload-area {
        border: 2px dashed var(--border);
        border-radius: 8px;
        width: 100%;
        max-width: 600px;
        padding: 40px;
        background-color: #fafafa;
        cursor: pointer;
        transition: all 0.3s;
    }
    
    .upload-area:hover, .upload-area.dragover {
        border-color: var(--primary);
        background-color: #e6f7ff;
    }
    
    .upload-icon {
        font-size: 48px;
        color: var(--primary);
        margin-bottom: 15px;
    }
    
    .upload-button {
        background: var(--primary);
        color: white;
        border: none;
        padding: 12px 30px;
        font-size: 16px;
        border-radius: 4px;
        cursor: pointer;
        transition: background 0.3s;
        margin-top: 20px;
    }
    
    .upload-button:hover {
        background: #096dd9;
    }
    
    .result-section {
        display: none;
    }
    
    .result-row {
        display: flex;
        flex-wrap: wrap;
        gap: 20px;
        margin-bottom: 25px;
    }
    
    .result-card {
        flex: 1;
        min-width: 300px;
        padding: 20px;
        border-radius: 8px;
        box-shadow: 0 2px 8px rgba(0, 0, 0, 0.1);
        background: white;
    }
    
    .result-indicator {
        font-size: 1.8rem;
        font-weight: bold;
        text-align: center;
        padding: 20px;
        border-radius: 8px;
        margin-top: 20px;
    }
    
    .authentic {
        background-color: #f6ffed;
        border: 1px solid var(--success);
        color: var(--success);
    }
    
    .deepfake {
        background-color: #fff1f0;
        border: 1px solid var(--danger);
        color: var(--danger);
    }
    
    .meter {
        height: 20px;
        background: #eee;
        border-radius: 10px;
        margin: 15px 0;
        overflow: hidden;
    }
    
    .meter-fill {
        height: 100%;
        border-radius: 10px;
        background: var(--primary);
        transition: width 0.5s;
    }
    
    .tamper-region {
        padding: 10px;
        border: 1px solid var(--border);
        border-radius: 4px;
        margin-bottom: 10px;
        background: #f9f9f9;
    }
    
    footer {
        text-align: center;
        margin-top: 40px;
        padding-top: 20px;
        border-top: 1px solid var(--border);
        color: #666;
    }
    
    .loading {
        display: none;
        text-align: center;
        padding: 20px;
    }
    
    .spinner {
        border: 4px solid rgba(0, 0, 0, 0.1);
        width: 36px;
        height: 36px;
        border-radius: 50%;
        border-left-color: var(--primary);
        animation: spin 1s linear infinite;
        margin: 0 auto 15px;
    }
    
    @keyframes spin {
        0% { transform: rotate(0deg); }
        100% { transform: rotate(360deg); }
    }
</style>

</head>
<body>
<header>
<div class=“logo”>
<svg viewBox=“0 0 24 24” width=“24” height=“24” fill=“currentColor”>
<path d=“M12 2L2 7l10 5 10-5-10-5zM2 17l10 5 10-5M2 12l10 5 10-5”></path>
</svg>
<span>反Deepfake认证系统</span>
</div>
<h1>玩家视频社交防伪平台</h1>
<p class=“subtitle”>
集成华为MediaAI伪造检测模型,提供AI生成内容的深度识别和分析,保护社交媒体的真实性和安全性
</p>
</header>

<main>
    <div class="card upload-section" id="uploadSection">
        <div class="upload-area" id="uploadArea">
            <div class="upload-icon">
                <svg viewBox="0 0 24 24" width="48" height="48" fill="currentColor">
                    <path d="M19.35 10.04C18.67 6.59 15.64 4 12 4 9.11 4 6.6 5.64 5.35 8.04 2.34 8.36 0 10.91 0 14c0 3.31 2.69 6 6 6h13c2.76 0 5-2.24 5-5 0-2.64-2.05-4.78-4.65-4.96zM14 13v4h-4v-4H7l5-5 5 5h-3z"></path>
                </svg>
            </div>
            <h2>上传视频进行Deepfake检测</h2>
            <p>支持MP4、MOV、AVI格式,最大256MB</p>
            <p>我们将使用华为MediaAI技术分析您的视频内容</p>
            <input type="file" id="videoFile" accept="video/*" style="display:none">
            <button class="upload-button" id="uploadButton">选择视频文件</button>
        </div>
    </div>
    
    <div class="loading" id="loading">
        <div class="spinner"></div>
        <p>正在使用华为MediaAI模型进行Deepfake检测...</p>
        <p>检测过程可能需要几十秒,请耐心等待</p>
    </div>
    
    <div class="card result-section" id="resultSection">
        <h2 style="text-align: center; margin-bottom: 20px;">检测结果</h2>
        
        <div class="result-row">
            <div class="result-card">
                <h3>视频基本信息</h3>
                <div id="videoInfo">
                    <!-- 动态填充 -->
                </div>
            </div>
            
            <div class="result-card">
                <h3>AI分析指标</h3>
                <div id="analysisMetrics">
                    <!-- 动态填充 -->
                </div>
            </div>
        </div>
        
        <div class="result-indicator" id="resultIndicator">
            <!-- 动态填充 -->
        </div>
        
        <div class="result-card">
            <h3>篡改区域检测</h3>
            <div id="tamperResults">
                <!-- 动态填充 -->
            </div>
        </div>
    </div>
</main>

<footer>
    <p>反Deepfake认证系统 v1.0 &copy; 2023 | 基于华为MediaAI伪造检测技术</p>
    <p>注意:本系统为Deepfake检测工具,实际效果可能因视频质量而有所不同</p>
</footer>

<script>
    document.addEventListener('DOMContentLoaded', function() {
        const uploadArea = document.getElementById('uploadArea');
        const uploadButton = document.getElementById('uploadButton');
        const videoFileInput = document.getElementById('videoFile');
        const uploadSection = document.getElementById('uploadSection');
        const loading = document.getElementById('loading');
        const resultSection = document.getElementById('resultSection');
        
        // 上传按钮点击事件
        uploadButton.addEventListener('click', () => videoFileInput.click());
        
        // 文件输入变化事件
        videoFileInput.addEventListener('change', handleFileSelect);
        
        // 拖拽事件处理
        uploadArea.addEventListener('dragover', (e) => {
            e.preventDefault();
            uploadArea.classList.add('dragover');
        });
        
        uploadArea.addEventListener('dragleave', () => {
            uploadArea.classList.remove('dragover');
        });
        
        uploadArea.addEventListener('drop', (e) => {
            e.preventDefault();
            uploadArea.classList.remove('dragover');
            
            if (e.dataTransfer.files.length > 0) {
                const file = e.dataTransfer.files[0];
                if (isVideoFile(file)) {
                    processVideoFile(file);
                } else {
                    alert('请上传视频文件 (MP4, MOV, AVI)');
                }
            }
        });
        
        function handleFileSelect(e) {
            const file = e.target.files[0];
            if (file && isVideoFile(file)) {
                processVideoFile(file);
            } else {
                alert('请上传视频文件 (MP4, MOV, AVI)');
            }
        }
        
        function isVideoFile(file) {
            const validExtensions = ['.mp4', '.mov', '.avi', '.webm'];
            return validExtensions.some(ext => file.name.toLowerCase().endsWith(ext));
        }
        
        function processVideoFile(file) {
            // 显示加载状态
            uploadSection.style.display = 'none';
            loading.style.display = 'block';
            
            // 创建表单数据
            const formData = new FormData();
            formData.append('video', file);
            
            // 发送检测请求
            fetch('/detect', {
                method: 'POST',
                body: formData
            })
            .then(response => response.json())
            .then(data => {
                loading.style.display = 'none';
                displayResults(data);
            })
            .catch(error => {
                console.error('Error:', error);
                loading.style.display = 'none';
                uploadSection.style.display = 'block';
                alert('检测过程中出错,请重试');
            });
        }
        
        function displayResults(data) {
            // 更新视频基本信息
            const videoInfo = `
                <p><strong>文件名:</strong> ${data.filename}</p>
                <p><strong>时长:</strong> ${data.metadata.duration}秒</p>
                <p><strong>分辨率:</strong> ${data.metadata.resolution}</p>
                <p><strong>总帧数:</strong> ${data.metadata.frame_count}</p>
                <p><strong>帧率:</strong> ${data.metadata.fps} FPS</p>
                <p><strong>检测时间:</strong> ${data.timestamp}</p>
                <p><strong>处理耗时:</strong> ${data.processing_time}秒</p>
            `;
            document.getElementById('videoInfo').innerHTML = videoInfo;
            
            // 更新分析指标
            const analysisMetrics = `
                <p><strong>置信度:</strong> ${data.confidence}</p>
                <div class="meter">
                    <div class="meter-fill" style="width:${data.confidence * 100}%"></div>
                </div>
                
                <p><strong>面部运动评分:</strong> ${data.facial_movement_score}</p>
                <p><strong>眨眼频率:</strong> ${data.blink_rate}次/分钟</p>
                <p><strong>音频完整性:</strong> ${data.audio_integrity ? '正常' : '异常'}</p>
            `;
            document.getElementById('analysisMetrics').innerHTML = analysisMetrics;
            
            // 更新结果指示器
            const resultClass = data.is_deepfake ? 'deepfake' : 'authentic';
            const resultText = data.is_deepfake 
                ? `深度伪造检测结果:可疑伪造视频 (置信度: ${data.confidence})` 
                : `深度伪造检测结果:真实视频 (置信度: ${data.confidence})`;
            
            document.getElementById('resultIndicator').className = `result-indicator ${resultClass}`;
            document.getElementById('resultIndicator').textContent = resultText;
            
            // 更新篡改区域结果
            let tamperHTML = '';
            if (data.tamper_regions && data.tamper_regions.length > 0) {
                tamperHTML += `<p>检测到 ${data.tamper_regions.length} 个可疑篡改区域:</p>`;
                data.tamper_regions.forEach(region => {
                    tamperHTML += `
                        <div class="tamper-region">
                            <p><strong>帧位置:</strong> ${region.frame}</p>
                            <p><strong>坐标:</strong> (${region.position.x}, ${region.position.y})</p>
                            <p><strong>区域尺寸:</strong> ${region.position.width}×${region.position.height}px</p>
                        </div>
                    `;
                });
            } else {
                tamperHTML = '<p>未检测到明显的篡改区域</p>';
            }
            document.getElementById('tamperResults').innerHTML = tamperHTML;
            
            // 显示结果部分
            resultSection.style.display = 'block';
        }
    });
</script>

</body>
</html>

系统技术说明

核心功能

  1. 视频上传接口:
    • 支持多种视频格式上传(MP4、MOV、AVI)

    • 最大支持256MB文件

    • 拖拽和点击两种上传方式

  2. 元数据提取:
    • 使用OpenCV获取视频基本信息

    • 包括时长、分辨率、帧数等

  3. 华为MediaAI集成:
    • 伪造检测API调用

    • 多维度深度分析(面部运动、眨眼频率、音频完整性等)

  4. 检测结果展示:
    • 直观的结果指示器(真实/伪造)

    • 篡改区域定位

    • 置信度可视化

实际集成说明

在实际使用中,需要:

  1. 申请华为MediaAI API访问权限
  2. 替换代码中的API端点URL和密钥
  3. 配置API请求参数以满足实际业务需求

运行说明

  1. 安装依赖:
    pip install flask numpy opencv-python requests

  2. 创建项目结构:

project/
├── app.py
├── uploads/
└── templates/
└── index.html

  1. 启动应用:
    python app.py

  2. 访问 http://localhost:5000

该系统提供了完整的用户界面和后端服务,可用于视频社交平台的内容真实性验证,有效防御Deepfake伪造视频的传播。

标签
已于2025-7-18 20:19:49修改
收藏
回复
举报
回复
    相关推荐