
鸿蒙跨端智能健身指导系统:多设备协同的动作识别与纠正方案 原创
鸿蒙跨端智能健身指导系统:多设备协同的动作识别与纠正方案
一、项目概述
本系统基于HarmonyOS 5的分布式能力和AI技术,实现以下核心功能:
实时动作识别:通过多设备摄像头捕捉用户健身动作
智能纠错指导:分析动作准确性并提供实时反馈
跨端数据同步:训练数据在多设备间实时同步共享
协同训练模式:多人同步训练与动作对比
二、技术架构
!https://example.com/harmonyos-fitness-arch.png
采用四层架构:
感知层:多设备摄像头/传感器数据采集
AI层:动作识别与纠错模型
同步层:分布式数据管理
展示层:多设备协同反馈界面
三、核心代码实现
动作识别模块
// PoseDetector.ts
import image from ‘@ohos.multimedia.image’;
import bodyDetection from ‘@ohos.ai.bodyDetection’;
interface PoseAnalysisResult {
joints: Record<string, {x: number, y: number, score: number}>;
correctness: number;
feedback: string[];
export class PoseDetector {
private detector: bodyDetection.BodyDetector;
private readonly STANDARDS = {
squat: { kneeAngle: [85, 95], hipAngle: [170, 190] },
pushup: { elbowAngle: [75, 90], shoulderAngle: [170, 190] }
};
async init() {
try {
this.detector = await bodyDetection.createBodyDetector();
console.info(‘动作检测器初始化成功’);
catch (err) {
console.error(初始化失败: {err.code}, {err.message});
}
async analyzePose(image: image.Image, exerciseType: string): Promise<PoseAnalysisResult> {
const detectionResult = await this.detector.detect(image);
return this.evaluatePose(detectionResult, exerciseType);
private evaluatePose(result: bodyDetection.BodyDetectionResult, type: string): PoseAnalysisResult {
const joints = this.mapJoints(result.joints);
const angles = this.calculateJointAngles(joints);
const standard = this.STANDARDS[type];
const feedback: string[] = [];
let correctness = 100;
// 评估深蹲动作
if (type === 'squat') {
if (angles.knee < standard.kneeAngle[0]) {
feedback.push("膝盖弯曲过度,建议减小下蹲深度");
correctness -= 30;
else if (angles.knee > standard.kneeAngle[1]) {
feedback.push("下蹲深度不足,建议加大幅度");
correctness -= 20;
if (angles.hip < standard.hipAngle[0]) {
feedback.push("背部前倾过多,保持背部挺直");
correctness -= 25;
}
// 其他动作评估...
return { joints, correctness, feedback };
private mapJoints(joints: bodyDetection.Joint[]): Record<string, {x: number, y: number, score: number}> {
// 将关节数据转换为更易用的格式
return joints.reduce((map, joint) => {
map[joint.type] = { x: joint.x, y: joint.y, score: joint.score };
return map;
}, {});
private calculateJointAngles(joints: Record<string, any>) {
// 计算关键关节角度
return {
knee: this.calculateAngle(joints['left_hip'], joints['left_knee'], joints['left_ankle']),
hip: this.calculateAngle(joints['left_shoulder'], joints['left_hip'], joints['left_knee'])
};
// 其他辅助方法…
分布式训练数据管理
// FitnessDataManager.ts
import distributedData from ‘@ohos.data.distributedData’;
import deviceManager from ‘@ohos.distributedHardware.deviceManager’;
interface TrainingSession {
sessionId: string;
userId: string;
exerciseType: string;
startTime: number;
endTime?: number;
sets: TrainingSet[];
devices: string[];
interface TrainingSet {
setNumber: number;
reps: number;
avgCorrectness: number;
details: RepDetail[];
interface RepDetail {
timestamp: number;
correctness: number;
feedback: string[];
jointsData: string; // 压缩的关节数据
export class FitnessDataManager {
private kvManager: distributedData.KVManager;
private kvStore: distributedData.KVStore;
async init() {
const context = getContext(this);
this.kvManager = distributedData.createKVManager({ context });
const options = {
createIfMissing: true,
encrypt: true,
autoSync: true,
kvStoreType: distributedData.KVStoreType.SINGLE_VERSION,
securityLevel: distributedData.SecurityLevel.S1
};
this.kvStore = await this.kvManager.getKVStore('fitness_data', options);
this.setupSyncListeners();
async startNewSession(userId: string, exerciseType: string, devices: string[]): Promise<string> {
const sessionId = session_${Date.now()};
const session: TrainingSession = {
sessionId,
userId,
exerciseType,
startTime: Date.now(),
sets: [],
devices
};
await this.kvStore.put(sessionId, session);
return sessionId;
async addSetData(sessionId: string, set: TrainingSet) {
const session = await this.kvStore.get(sessionId);
if (session) {
session.sets.push(set);
await this.kvStore.put(sessionId, session);
}
async getSessionData(sessionId: string): Promise<TrainingSession | undefined> {
try {
return await this.kvStore.get(sessionId);
catch (err) {
console.error(获取训练数据失败: {err.code}, {err.message});
return undefined;
}
private setupSyncListeners() {
this.kvStore.on(‘dataChange’, distributedData.SubscribeType.SUBSCRIBE_TYPE_REMOTE,
(changedItems) => {
changedItems.forEach(({ key, value }) => {
this.handleRemoteUpdate(key, value);
});
});
// 其他数据管理方法…
主页面实现(ArkUI)
// FitnessCoach.ets
import { PoseDetector } from ‘./PoseDetector’;
import { FitnessDataManager } from ‘./FitnessDataManager’;
@Entry
@Component
struct FitnessCoachApp {
@State currentExercise: string = ‘squat’;
@State realtimeFeedback: string[] = [];
@State correctnessScore: number = 0;
@State trainingHistory: TrainingSession[] = [];
private poseDetector = new PoseDetector();
private dataManager = new FitnessDataManager();
private cameraController?: CameraController;
private currentSessionId?: string;
async aboutToAppear() {
await this.poseDetector.init();
await this.dataManager.init();
this.loadHistory();
async startTraining() {
this.currentSessionId = await this.dataManager.startNewSession(
'user123',
this.currentExercise,
['current-device'] // 实际项目中获取组网设备列表
);
this.startCameraMonitoring();
private startCameraMonitoring() {
this.cameraController = new CameraController({
onFrame: async (image: image.Image) => {
const analysis = await this.poseDetector.analyzePose(image, this.currentExercise);
this.realtimeFeedback = analysis.feedback;
this.correctnessScore = analysis.correctness;
// 保存关键帧数据
if (this.currentSessionId) {
await this.saveAnalysisResult(analysis);
},
frameRate: 5 // 每秒5帧分析
});
this.cameraController.start();
build() {
Column() {
// 训练类型选择
ExerciseSelector({
current: this.currentExercise,
onSelect: (ex) => { this.currentExercise = ex; }
})
// 实时反馈区域
FeedbackDisplay({
feedback: this.realtimeFeedback,
score: this.correctnessScore
})
// 训练控制按钮
Row() {
Button('开始训练')
.onClick(() => this.startTraining())
Button('结束训练')
.onClick(() => this.endTraining())
// 历史记录
TrainingHistory({
sessions: this.trainingHistory,
onSelect: (session) => this.viewSessionDetails(session)
})
}
// 其他方法实现…
@Component
struct FeedbackDisplay {
@Prop feedback: string[];
@Prop score: number;
build() {
Column() {
// 得分展示
Text(动作准确度: ${this.score.toFixed(1)}%)
.fontSize(20)
.fontColor(this.getScoreColor())
// 反馈列表
List() {
ForEach(this.feedback, (item, index) => {
ListItem() {
Text({index + 1}. {item})
.fontSize(16)
})
.height(‘40%’)
}
private getScoreColor(): Resource {
if (this.score > 85) return $r(‘app.color.green’);
if (this.score > 70) return $r(‘app.color.yellow’);
return $r(‘app.color.red’);
}
四、跨设备协同关键实现
多视角动作分析
// MultiAngleAnalyzer.ts
import distributedData from ‘@ohos.data.distributedData’;
export class MultiAngleAnalyzer {
private kvStore: distributedData.KVStore;
async init() {
const context = getContext(this);
const kvManager = distributedData.createKVManager({ context });
this.kvStore = await kvManager.getKVStore(‘multi_angle_data’, {
createIfMissing: true,
autoSync: true
});
async syncPoseData(deviceId: string, poseData: PoseAnalysisResult) {
const key = pose_{deviceId}_{Date.now()};
await this.kvStore.put(key, {
deviceId,
timestamp: Date.now(),
joints: poseData.joints,
correctness: poseData.correctness
});
async getCombinedAnalysis(): Promise<CombinedAnalysis> {
const entries = await this.kvStore.entries('pose_');
const recentData = this.filterRecentData(entries);
return this.analyzeMultipleAngles(recentData);
private analyzeMultipleAngles(data: PoseData[]): CombinedAnalysis {
// 实现多视角综合分析算法
const avgCorrectness = data.reduce((sum, d) => sum + d.correctness, 0) / data.length;
const feedback: string[] = [];
if (data.length >= 2) {
// 比较不同视角的数据
const sideView = data.find(d => d.deviceId === 'side_camera');
const frontView = data.find(d => d.deviceId === 'front_camera');
if (sideView && frontView) {
const hipDiff = Math.abs(
this.getJointAngle(sideView.joints, 'hip') -
this.getJointAngle(frontView.joints, 'hip')
);
if (hipDiff > 15) {
feedback.push("检测到身体扭转,保持躯干稳定");
}
return { avgCorrectness, feedback };
// 其他辅助方法…
分布式设备协同训练
// CollaborativeTraining.ts
import deviceManager from ‘@ohos.distributedHardware.deviceManager’;
export class CollaborativeTraining {
private deviceManager: deviceManager.DeviceManager;
private participants: TrainingParticipant[] = [];
async init() {
this.deviceManager = await deviceManager.createDeviceManager(‘com.example.fitness’);
this.setupDeviceListeners();
async startGroupSession(exerciseType: string) {
const devices = await this.deviceManager.getTrustedDeviceListSync();
const sessionId = group_${Date.now()};
await Promise.all(devices.map(device => {
return this.inviteToSession(device.deviceId, sessionId, exerciseType);
}));
return sessionId;
private async inviteToSession(deviceId: string, sessionId: string, exerciseType: string) {
const params = {
sessionId,
exerciseType,
startTime: Date.now()
};
try {
await this.deviceManager.sendMessage(deviceId, 'training_invite', JSON.stringify(params));
console.info(邀请已发送至设备${deviceId});
catch (err) {
console.error(发送邀请失败: {err.code}, {err.message});
}
// 其他协同训练方法…
实时数据同步优化
// 在FitnessDataManager中添加
async syncCriticalData(sessionId: string, criticalUpdates: Partial<TrainingSession>) {
const updateKey = critical_{sessionId}_{Date.now()};
await this.kvStore.put(updateKey, {
sessionId,
…criticalUpdates,
syncTime: Date.now()
});
// 确保数据立即同步
await this.kvStore.save(‘remote’);
private setupPrioritySync() {
this.kvStore.on(‘syncComplete’, (syncStats) => {
console.info(同步完成,已同步${syncStats.syncedItems}项数据);
this.cleanupOldData();
});
五、智能算法增强
个性化动作改进建议
// PersonalizedCoach.ts
export class PersonalizedCoach {
private userProfile: UserProfile;
private trainingHistory: TrainingSession[];
constructor(profile: UserProfile, history: TrainingSession[]) {
this.userProfile = profile;
this.trainingHistory = history;
getPersonalizedAdvice(session: TrainingSession): string[] {
const advice: string[] = [];
const history = this.trainingHistory
.filter(s => s.exerciseType === session.exerciseType)
.sort((a, b) => b.startTime - a.startTime);
// 分析进步情况
if (history.length >= 3) {
const recentAvg = this.calculateAvgCorrectness(history.slice(0, 3));
const olderAvg = this.calculateAvgCorrectness(history.slice(3, 6));
if (recentAvg > olderAvg + 5) {
advice.push(进步明显!最近三次训练平均准确度比之前提高了${(recentAvg - olderAvg).toFixed(1)}%);
}
// 根据用户特征提供建议
if (this.userProfile.height > 175 && session.exerciseType === 'squat') {
advice.push("由于您的身高较高,建议适当加宽站距以保持平衡");
return advice;
// 其他个性化分析方法…
疲劳度检测算法
// FatigueDetector.ts
export class FatigueDetector {
detectFatigue(sets: TrainingSet[]): FatigueAnalysis {
const latestSet = sets[sets.length - 1];
const firstSet = sets[0];
const correctnessDrop = firstSet.avgCorrectness - latestSet.avgCorrectness;
const speedDrop = this.calculateSpeedDrop(firstSet, latestSet);
return {
isFatigued: correctnessDrop > 15 || speedDrop > 20,
fatigueLevel: Math.max(correctnessDrop / 3, speedDrop / 2),
suggestions: this.getFatigueSuggestions(correctnessDrop, speedDrop)
};
private getFatigueSuggestions(correctnessDrop: number, speedDrop: number): string[] {
const suggestions: string[] = [];
if (correctnessDrop > 15) {
suggestions.push("动作质量下降明显,建议减少下一组次数或休息更长时间");
if (speedDrop > 20) {
suggestions.push("动作速度明显减慢,可能是肌肉疲劳信号");
if (correctnessDrop > 20 && speedDrop > 30) {
suggestions.push("强烈建议结束当前训练,避免受伤风险");
return suggestions;
// 其他疲劳检测方法…
六、性能优化方案
关节数据压缩传输:
// 在PoseDetector中添加
private compressJointsData(joints: any): string {
const simplified = Object.entries(joints).map(([key, val]) => ({
k: key[0] + key.split(‘_’).map(p => p[0]).join(‘’),
x: Math.round(val.x),
y: Math.round(val.y)
}));
return JSON.stringify(simplified);
关键帧分析策略:
// 修改摄像头帧处理逻辑
private lastAnalysisTime = 0;
private readonly ANALYSIS_INTERVAL = 300; // 300ms
async onCameraFrame(image: image.Image) {
const now = Date.now();
if (now - this.lastAnalysisTime < this.ANALYSIS_INTERVAL) return;
const analysis = await this.poseDetector.analyzePose(image, this.currentExercise);
this.lastAnalysisTime = now;
// 只处理置信度高的结果
if (analysis.correctness > 60) {
this.updateFeedback(analysis);
}
分布式数据分片:
// 大数据分片处理
async syncLargeJointData(jointsData: any[], sessionId: string) {
const CHUNK_SIZE = 5;
for (let i = 0; i < jointsData.length; i += CHUNK_SIZE) {
const chunk = jointsData.slice(i, i + CHUNK_SIZE);
await this.kvStore.put({sessionId}joints{i}, chunk);
}
七、应用场景扩展
虚拟教练AR展示:
class ARCoach {
showCorrectPoseInAR(correctPose: PoseAnalysisResult) {
// 在AR中展示标准动作
}
社交健身挑战:
class FitnessChallenge {
createMultiplayerChallenge(exercise: string, duration: number) {
// 创建多人健身挑战
}
康复训练监控:
class RehabMonitor {
checkRecoveryProgress(sessions: TrainingSession[]) {
// 分析康复训练进展
}
智能健身计划:
class WorkoutPlanner {
generatePlanBasedOnHistory(history: TrainingSession[]) {
// 根据历史数据生成个性化计划
}
本系统充分利用HarmonyOS 5的分布式能力与AI技术,打造了智能化的跨设备健身指导体验。开发者可以基于此框架扩展更多健康管理功能,如营养建议、睡眠分析等,构建全方位的数字健康解决方案。
