
鸿蒙跨设备家庭能耗监测系统:分布式电表数据采集与多终端可视化方案 原创
鸿蒙跨设备家庭能耗监测系统:分布式电表数据采集与多终端可视化方案
一、系统架构设计
!https://example.com/harmonyos-energy-arch.png
采用四层架构:
设备层:智能电表与传感器网络
网关层:鸿蒙设备数据采集与预处理
分析层:分布式能耗计算与异常检测
展示层:多终端实时数据可视化
二、核心模块实现
智能电表数据采集
// EnergyMeterReader.ts
import iot from ‘@ohos.iot’;
import distributedData from ‘@ohos.data.distributedData’;
interface MeterReading {
timestamp: number;
deviceId: string;
voltage: number; // 电压(V)
current: number; // 电流(A)
power: number; // 功率(W)
energy: number; // 累计电量(kWh)
export class EnergyMeterReader {
private kvManager: distributedData.KVManager;
private kvStore?: distributedData.KVStore;
async init() {
const context = getContext(this);
this.kvManager = distributedData.createKVManager({ context });
this.kvStore = await this.kvManager.getKVStore(‘meter_readings’, {
createIfMissing: true,
autoSync: true,
securityLevel: distributedData.SecurityLevel.S2
});
// 注册IoT设备监听
iot.on('deviceStatusChange', this.handleDeviceChange.bind(this));
async startMonitoring(deviceId: string) {
try {
const config = {
sampleInterval: 5000, // 5秒采集一次
metrics: ['voltage', 'current', 'power', 'energy']
};
await iot.subscribe(deviceId, config, (data) => {
this.processReading({
...data,
deviceId,
timestamp: Date.now()
});
});
catch (err) {
console.error(启动监测失败: {err.code}, {err.message});
}
private async processReading(reading: MeterReading) {
// 数据校验
if (reading.power < 0 || reading.energy < 0) return;
// 存储到分布式数据库
const key = reading_{reading.deviceId}_{reading.timestamp};
await this.kvStore?.put(key, reading);
// 触发本地处理
postMessageToUI({
type: 'new_reading',
data: reading
});
// 其他方法…
能耗数据分析
// EnergyAnalyzer.ts
import statistical from ‘@ohos.ai.statistical’;
export class EnergyAnalyzer {
async calculateHourlyConsumption(readings: MeterReading[]): Promise<HourlyConsumption> {
const hourlyData: Record<number, number> = {};
readings.forEach(reading => {
const hour = new Date(reading.timestamp).getHours();
hourlyData[hour] = (hourlyData[hour] || 0) +
(reading.power * 5 / 3600); // 5秒采样转换为kWh
});
return {
date: new Date(readings[0].timestamp).toLocaleDateString(),
hourly: Object.entries(hourlyData).map(([hour, energy]) => ({
hour: parseInt(hour),
energy
}))
};
async detectAnomalies(readings: MeterReading[]): Promise<AnomalyReport[]> {
const powerValues = readings.map(r => r.power);
const stats = statistical.analyze(powerValues);
return readings
.filter(r => r.power > stats.mean + 3 * stats.stdDev)
.map(r => ({
timestamp: r.timestamp,
deviceId: r.deviceId,
power: r.power,
severity: 'high'
}));
// 其他分析方法…
主页面实现(ArkUI)
// EnergyDashboard.ets
import { EnergyMeterReader } from ‘./EnergyMeterReader’;
import { EnergyAnalyzer } from ‘./EnergyAnalyzer’;
@Entry
@Component
struct EnergyDashboard {
@State currentReadings: MeterReading[] = [];
@State hourlyConsumption?: HourlyConsumption;
@State anomalies: AnomalyReport[] = [];
@State devices: EnergyDevice[] = [];
private meterReader = new EnergyMeterReader();
private analyzer = new EnergyAnalyzer();
async aboutToAppear() {
await this.meterReader.init();
this.loadDevices();
// 监听新数据
eventBus.on('new_reading', (reading: MeterReading) => {
this.currentReadings = [...this.currentReadings, reading];
this.updateAnalysis();
});
async loadDevices() {
this.devices = await iot.getDevicesByType('smart_meter');
this.devices.forEach(device => {
this.meterReader.startMonitoring(device.deviceId);
});
async updateAnalysis() {
if (this.currentReadings.length > 0) {
this.hourlyConsumption = await this.analyzer.calculateHourlyConsumption(
this.currentReadings.slice(-24 * 12) // 保留最近12小时数据
);
this.anomalies = await this.analyzer.detectAnomalies(
this.currentReadings.slice(-24 * 60) // 检测最近24小时异常
);
}
build() {
Column() {
// 实时数据展示
RealTimeDisplay({
readings: this.currentReadings.slice(-10).reverse()
})
// 能耗图表
if (this.hourlyConsumption) {
EnergyChart({
data: this.hourlyConsumption
})
// 异常警报
if (this.anomalies.length > 0) {
AnomalyAlerts({
reports: this.anomalies
})
}
}
@Component
struct RealTimeDisplay {
@Prop readings: MeterReading[];
build() {
Grid() {
GridItem() {
MetricCard(‘当前功率’, ${this.latestReading.power.toFixed(1)}W)
GridItem() {
MetricCard('今日用电', ${this.calculateTodayUsage().toFixed(2)}kWh)
GridItem() {
MetricCard('电压', ${this.latestReading.voltage.toFixed(1)}V)
GridItem() {
MetricCard('电流', ${this.latestReading.current.toFixed(2)}A)
}
.columnsTemplate('1fr 1fr')
.rowsTemplate('1fr 1fr')
.columnsGap(10)
.rowsGap(10)
private get latestReading(): MeterReading {
return this.readings[0] || {
power: 0, voltage: 0, current: 0, energy: 0, timestamp: 0, deviceId: ''
};
private calculateTodayUsage(): number {
if (this.readings.length < 2) return 0;
return this.readings[0].energy - this.readings[this.readings.length - 1].energy;
}
@Component
struct EnergyChart {
@Prop data: HourlyConsumption;
build() {
Column() {
Text(日期: ${this.data.date})
.fontSize(16)
// 使用XComponent绘制图表
XComponent({
id: 'energy_chart',
type: 'canvas',
controller: this.chartController
})
.width('100%')
.height(200)
}
三、跨设备协同关键实现
分布式数据聚合
// 在EnergyMeterReader中添加
async getCombinedReadings(deviceIds: string[]): Promise<MeterReading[]> {
const allReadings: MeterReading[] = [];
await Promise.all(deviceIds.map(async deviceId => {
try {
const remoteStore = await distributedData.getRemoteKVStore(deviceId, ‘meter_readings’);
const entries = await remoteStore.entries(‘reading_’);
allReadings.push(…entries.map(([_, v]) => v as MeterReading));
catch (err) {
console.error(获取设备${deviceId}数据失败:, err);
}));
return allReadings.sort((a, b) => a.timestamp - b.timestamp);
多设备能耗对比
// 在EnergyAnalyzer中添加
async compareDevices(deviceIds: string[], period: ‘day’ ‘week’
‘month’) {
const now = Date.now();
let startTime: number;
switch (period) {
case ‘day’: startTime = now - 24 3600 1000; break;
case ‘week’: startTime = now - 7 24 3600 * 1000; break;
case ‘month’: startTime = now - 30 24 3600 * 1000; break;
const readings = await this.meterReader.getReadingsAfter(startTime);
const deviceConsumption: Record<string, number> = {};
deviceIds.forEach(id => {
deviceConsumption[id] = readings
.filter(r => r.deviceId === id)
.reduce((sum, r) => sum + r.power * 5 / 3600, 0); // 转换为kWh
});
return deviceConsumption;
异常协同预警
// 新增AnomalyNotifier.ts
export class AnomalyNotifier {
private kvManager: distributedData.KVManager;
async init() {
const context = getContext(this);
this.kvManager = distributedData.createKVManager({ context });
async notifyAnomaly(anomaly: AnomalyReport) {
const kvStore = await this.kvManager.getKVStore('energy_alerts');
await kvStore.put(alert_${anomaly.timestamp}, anomaly);
// 发送推送通知
await notification.publish({
id: 1,
content: {
title: '能耗异常警报',
text: 检测到${anomaly.power}W的高功耗,
additionalData: anomaly
});
async getRecentAlerts(hours: number): Promise<AnomalyReport[]> {
const kvStore = await this.kvManager.getKVStore('energy_alerts');
const entries = await kvStore.entries('alert_');
const cutoff = Date.now() - hours 3600 1000;
return entries
.map(([_, v]) => v as AnomalyReport)
.filter(a => a.timestamp >= cutoff)
.sort((a, b) => b.timestamp - a.timestamp);
}
四、性能优化方案
数据采样降频
// 在EnergyMeterReader中添加
private downsample(readings: MeterReading[], interval: number): MeterReading[] {
const sampled: MeterReading[] = [];
let lastTimestamp = 0;
readings.forEach(reading => {
if (reading.timestamp - lastTimestamp >= interval) {
sampled.push(reading);
lastTimestamp = reading.timestamp;
});
return sampled;
分布式计算任务分配
// 新增DistributedComputing.ts
export class DistributedComputing {
static async distributeAnalysisTask(
task: ‘hourly’ ‘daily’
‘anomaly’,
devices: string[]
): Promise<void> {
const manager = await deviceManager.createDeviceManager(‘com.example.energy’);
await Promise.all(devices.map(async deviceId => {
try {
await manager.sendMessage(deviceId, 'analysis_task', JSON.stringify({
type: task,
timestamp: Date.now()
}));
catch (err) {
console.error(分配任务到${deviceId}失败:, err);
}));
}
本地数据缓存
const readingCache = new Map<string, MeterReading[]>();
async getCachedReadings(deviceId: string, hours: number): Promise<MeterReading[]> {
const cacheKey = {deviceId}_{hours};
if (readingCache.has(cacheKey)) {
return readingCache.get(cacheKey)!;
const readings = await this.meterReader.getReadings(deviceId, hours);
readingCache.set(cacheKey, readings);
return readings;
五、应用场景扩展
电费预测系统
class CostPredictor {
async predictMonthlyBill(consumption: number): Promise<number> {
// 基于历史数据和电价计算预测
}
节能建议引擎
class EnergySaver {
async generateSuggestions(patterns: ConsumptionPattern[]): Promise<Suggestion[]> {
// 生成个性化节能建议
}
太阳能集成监控
class SolarIntegration {
async monitorSolarProduction(inverterId: string) {
// 监控太阳能发电与电网交互
}
家庭能源路由器
class EnergyRouter {
async optimizeDeviceUsage(devices: SmartDevice[]) {
// 根据电价和需求优化设备运行时间
}
本系统充分利用HarmonyOS分布式能力,实现了:
多设备数据聚合:整合全屋多个电表数据
实时能耗可视化:秒级数据刷新与图表展示
智能异常检测:基于统计学的异常用电识别
分布式计算优化:跨设备协同处理大数据
开发者可以基于此框架扩展更多能源管理场景:
与智能家居联动的节能控制
结合天气数据的能耗预测
电力需求响应系统集成
家庭能源微网管理系统
