鸿蒙应用开发之基础视觉服务骨骼点检测基础
一、工具
 

DevEco Studio
 
二、项目介绍
 
开发步骤
 在使用骨骼点检测时,将实现骨骼点检测相关的类添加至工程。
 import { skeletonDetection, visionBase } from '@kit.CoreVisionKit';
 import { BusinessError } from '@kit.BasicServicesKit';
 简单配置页面的布局,并在Button组件添加点击事件,拉起图库,选择图片。
 Button('选择图片')
   .type(ButtonType.Capsule)
   .fontColor(Color.White)
   .alignSelf(ItemAlign.Center)
   .width('80%')
   .margin(10)
   .onClick(() => {
     // 拉起图库,获取图片资源
     this.selectImage();
   })
 通过图库获取图片资源,将图片转换为PixelMap。
 private async selectImage() {
   let uri = await this.openPhoto()
   if (uri === undefined) {
     hilog.error(0x0000, 'skeletonDetectSample', "Failed to defined uri.");
   }
   this.loadImage(uri)
 }
 
private openPhoto(): Promise {
   return new Promise((resolve, reject) => {
     let photoPicker: photoAccessHelper.PhotoViewPicker = new photoAccessHelper.PhotoViewPicker();
     photoPicker.select({
       MIMEType: photoAccessHelper.PhotoViewMIMETypes.IMAGE_TYPE, maxSelectNumber: 1
     }).then(res => {
       resolve(res.photoUris[0])
     }).catch((err: BusinessError) => {
       hilog.error(0x0000, 'skeletonDetectSample', Failed to get photo image uri. code:${err.code},message:${err.message});
       reject('')
     })
   })
 }
 
private loadImage(name: string) {
   setTimeout(async () => {
     let fileSource = await fileIo.open(name, fileIo.OpenMode.READ_ONLY);
     this.imageSource = image.createImageSource(fileSource.fd);
     this.chooseImage = await this.imageSource.createPixelMap();
   }, 100)
 }
 实例化Request对象,并传入待检测图片的PixelMap,实现骨骼点检测功能。
 // 调用骨骼点识别接口
 let request: visionBase.Request = {
   inputData: { pixelMap: this.chooseImage }
 };
 let data: skeletonDetection.SkeletonDetectionResponse = await (await skeletonDetection.SkeletonDetector.create()).process(request);
 (可选)如果需要将结果展示在界面上,可以用下列代码。
 let data: skeletonDetection.SkeletonDetectionResponse = await (await skeletonDetection.SkeletonDetector.create()).process(request);
 let poseJson = JSON.stringify(data);
 hilog.info(0x0000, 'skeletonDetectSample', Succeeded in face detect:${poseJson});
 this.dataValues = poseJson;
 开发实例
 import { image } from '@kit.ImageKit';
 import { hilog } from '@kit.PerformanceAnalysisKit';
 import { BusinessError } from '@kit.BasicServicesKit';
 import { fileIo } from '@kit.CoreFileKit';
 import { skeletonDetection, visionBase } from '@kit.CoreVisionKit';
 import { photoAccessHelper } from '@kit.MediaLibraryKit';
 
@Entry
 @Component
 struct Index {
   private imageSource: image.ImageSource | undefined = undefined;
   @State chooseImage: PixelMap | undefined = undefined
   @State dataValues: string = ''
 
  build() {
     Column() {
       Image(this.chooseImage)
         .objectFit(ImageFit.Fill)
         .height('60%')
 
      Text(this.dataValues)
         .copyOption(CopyOptions.LocalDevice)
         .height('15%')
         .margin(10)
         .width('60%')
 
      Button('选择图片')
         .type(ButtonType.Capsule)
         .fontColor(Color.White)
         .alignSelf(ItemAlign.Center)
         .width('80%')
         .margin(10)
         .onClick(() => {
           // 拉起图库
           this.selectImage()
         })
 
      Button('开始骨骼点识别')
         .type(ButtonType.Capsule)
         .fontColor(Color.White)
         .alignSelf(ItemAlign.Center)
         .width('80%')
         .margin(10)
         .onClick(async () => {
           if(!this.chooseImage) {
             hilog.error(0x0000, 'skeletonDetectSample', Failed to choose image. chooseImage: ${this.chooseImage});
             return;
           }
           // 调用骨骼点识别接口
           let request: visionBase.Request = {
             inputData: { pixelMap: this.chooseImage }
           };
           let data: skeletonDetection.SkeletonDetectionResponse = await (await skeletonDetection.SkeletonDetector.create()).process(request);
           let poseJson = JSON.stringify(data);
           hilog.info(0x0000, 'skeletonDetectSample', Succeeded in face detect:${poseJson});
           this.dataValues = poseJson;
         })
     }
     .width('100%')
     .height('100%')
     .justifyContent(FlexAlign.Center)
   }
 
  private async selectImage() {
     let uri = await this.openPhoto()
     if (uri === undefined) {
       hilog.error(0x0000, 'skeletonDetectSample', "Failed to defined uri.");
     }
     this.loadImage(uri)
   }
 
 {
     return new Promise((resolve, reject) => {
       let photoPicker: photoAccessHelper.PhotoViewPicker = new photoAccessHelper.PhotoViewPicker();
       photoPicker.select({
         MIMEType: photoAccessHelper.PhotoViewMIMETypes.IMAGE_TYPE, maxSelectNumber: 1
       }).then(res => {
         resolve(res.photoUris[0])
       }).catch((err: BusinessError) => {
         hilog.error(0x0000, 'skeletonDetectSample', Failed to get photo image uri. code:${err.code},message:${err.message});
         reject('')
       })
     })
   }
 
  private loadImage(name: string) {
     setTimeout(async () => {
       let fileSource = await fileIo.open(name, fileIo.OpenMode.READ_ONLY);
       this.imageSource = image.createImageSource(fileSource.fd);
       this.chooseImage = await this.imageSource.createPixelMap();
     }, 100)
   }
 }




















