鸿蒙轻内核M核源码分析系列二一 02 文件系统LittleFS 原创 精华

发布于 2022-1-8 17:05
浏览
2收藏

鸿蒙轻内核M核源码分析系列二一 02 文件系统LittleFS

【本文正在参与优质创作者激励】

LittleFS是一个小型的Flash文件系统,它结合日志结构(log-structured)文件系统和COW(copy-on-write)文件系统的思想,以日志结构存储元数据,以COW结构存储数据。这种特殊的存储方式,使LittleFS具有强大的掉电恢复能力(power-loss resilience)。分配COW数据块时LittleFS采用了名为统计损耗均衡的动态损耗均衡算法,使Flash设备的寿命得到有效保障。同时LittleFS针对资源紧缺的小型设备进行设计,具有极其有限的ROM和RAM占用,并且所有RAM的使用都通过一个可配置的固定大小缓冲区进行分配,不会随文件系统的扩大占据更多的系统资源。当在一个资源非常紧缺的小型设备上,寻找一个具有掉电恢复能力并支持损耗均衡的Flash文件系统时,LittleFS是一个比较好的选择。本文先介绍下LFS文件系统结构体的结构体和全局变量,然后分析下LFS文件操作接口。文中所涉及的源码,均可以在开源站点https://gitee.com/openharmony/kernel_liteos_m 获取。


1、LFS文件系统结构体介绍

会分2部分来介绍结构体部分,先介绍LittleFS文件系统的结构体,然后介绍LiteOS-M内核中提供的和LittleFS相关的一些结构体。

1.1 LittleFS的枚举结构体

在openharmony/third_party/littlefs/lfs.h头文件中定义LittleFS的枚举、结构体,我们先简单了解下,后文会使用到的。

枚举lfs_type定义文件类型,了解下普通文件LFS_TYPE_REG和目录LFS_TYPE_DIR即可。枚举lfs_open_flags定义文件系统的打开标签属性信息,需要熟悉常用的只读LFS_O_RDONLY、只写LFS_O_WRONLY、读写LFS_O_RDWR等等。

// File types
enum lfs_type {
    // file types
    LFS_TYPE_REG            = 0x001,
    LFS_TYPE_DIR            = 0x002,

    // internally used types
    LFS_TYPE_SPLICE         = 0x400,
    LFS_TYPE_NAME           = 0x000,
    LFS_TYPE_STRUCT         = 0x200,
    LFS_TYPE_USERATTR       = 0x300,
    LFS_TYPE_FROM           = 0x100,
    LFS_TYPE_TAIL           = 0x600,
    LFS_TYPE_GLOBALS        = 0x700,
    LFS_TYPE_CRC            = 0x500,

    // internally used type specializations
    LFS_TYPE_CREATE         = 0x401,
    LFS_TYPE_DELETE         = 0x4ff,
    LFS_TYPE_SUPERBLOCK     = 0x0ff,
    LFS_TYPE_DIRSTRUCT      = 0x200,
    LFS_TYPE_CTZSTRUCT      = 0x202,
    LFS_TYPE_INLINESTRUCT   = 0x201,
    LFS_TYPE_SOFTTAIL       = 0x600,
    LFS_TYPE_HARDTAIL       = 0x601,
    LFS_TYPE_MOVESTATE      = 0x7ff,

    // internal chip sources
    LFS_FROM_NOOP           = 0x000,
    LFS_FROM_MOVE           = 0x101,
    LFS_FROM_USERATTRS      = 0x102,
};

// File open flags
enum lfs_open_flags {
    // open flags
    LFS_O_RDONLY = 1,         // Open a file as read only
#ifndef LFS_READONLY
    LFS_O_WRONLY = 2,         // Open a file as write only
    LFS_O_RDWR   = 3,         // Open a file as read and write
    LFS_O_CREAT  = 0x0100,    // Create a file if it does not exist
    LFS_O_EXCL   = 0x0200,    // Fail if a file already exists
    LFS_O_TRUNC  = 0x0400,    // Truncate the existing file to zero size
    LFS_O_APPEND = 0x0800,    // Move to end of file on every write
#endif

    // internally used flags
#ifndef LFS_READONLY
    LFS_F_DIRTY   = 0x010000, // File does not match storage
    LFS_F_WRITING = 0x020000, // File has been written since last flush
#endif
    LFS_F_READING = 0x040000, // File has been read since last flush
#ifndef LFS_READONLY
    LFS_F_ERRED   = 0x080000, // An error occurred during write
#endif
    LFS_F_INLINE  = 0x100000, // Currently inlined in directory entry
};

结构体lfs_t是littlefs文件系统类型结构体,lfs文件系统操作接口的第一个参数一般为这个结构体。成员变量struct lfs_config *cfg下文会涉及,其他成员变量可以暂不了解。

// The littlefs filesystem type
typedef struct lfs {
    lfs_cache_t rcache;
    lfs_cache_t pcache;

    lfs_block_t root[2];
    struct lfs_mlist {
        struct lfs_mlist *next;
        uint16_t id;
        uint8_t type;
        lfs_mdir_t m;
    } *mlist;
    uint32_t seed;

    lfs_gstate_t gstate;
    lfs_gstate_t gdisk;
    lfs_gstate_t gdelta;

    struct lfs_free {
        lfs_block_t off;
        lfs_block_t size;
        lfs_block_t i;
        lfs_block_t ack;
        uint32_t *buffer;
    } free;

    const struct lfs_config *cfg;
    lfs_size_t name_max;
    lfs_size_t file_max;
    lfs_size_t attr_max;

#ifdef LFS_MIGRATE
    struct lfs1 *lfs1;
#endif
} lfs_t;

结构体lfs_file_t、lfs_dir_t分别是littlefs的文件和目录类型结构体,暂不需要关心成员变量细节,知道结构体的用途即可。

// littlefs directory type
typedef struct lfs_dir {
    struct lfs_dir *next;
    uint16_t id;
    uint8_t type;
    lfs_mdir_t m;

    lfs_off_t pos;
    lfs_block_t head[2];
} lfs_dir_t;

// littlefs file type
typedef struct lfs_file {
    struct lfs_file *next;
    uint16_t id;
    uint8_t type;
    lfs_mdir_t m;

    struct lfs_ctz {
        lfs_block_t head;
        lfs_size_t size;
    } ctz;

    uint32_t flags;
    lfs_off_t pos;
    lfs_block_t block;
    lfs_off_t off;
    lfs_cache_t cache;

    const struct lfs_file_config *cfg;
} lfs_file_t;

结构体lfs_config用于提供初始化littlefs文件系统的一些配置。其中.read,.prog,.erase,.sync分别对应该硬件平台上的底层的读写\擦除\同步等接口。

  • read_size 每次读取的字节数,可以比物理读单元大以改善性能,这个数值决定了读缓存的大小,但值太大会带来更多的内存消耗。

  • prog_size 每次写入的字节数,可以比物理写单元大以改善性能,这个数值决定了写缓存的大小,必须是read_size的整数倍,但值太大会带来更多的内存消耗。

  • block_size 每个擦除块的字节数,可以比物理擦除单元大,但此数值应尽可能小因为每个文件至少会占用一个块。必须是prog_size的整数倍。

  • block_count 可以被擦除的块数量,这取决于块设备的容量及擦除块的大小。

// Configuration provided during initialization of the littlefs
struct lfs_config {
    // Opaque user provided context that can be used to pass
    // information to the block device operations
    void *context;

    int (*read)(const struct lfs_config *c, lfs_block_t block,
            lfs_off_t off, void *buffer, lfs_size_t size);
    int (*prog)(const struct lfs_config *c, lfs_block_t block,
            lfs_off_t off, const void *buffer, lfs_size_t size);
    int (*erase)(const struct lfs_config *c, lfs_block_t block);
    int (*sync)(const struct lfs_config *c);

#ifdef LFS_THREADSAFE
    int (*lock)(const struct lfs_config *c);
    int (*unlock)(const struct lfs_config *c);
#endif

    lfs_size_t read_size;
    lfs_size_t prog_size;
    lfs_size_t block_size;
    lfs_size_t block_count;

    int32_t block_cycles;
    lfs_size_t cache_size;
    lfs_size_t lookahead_size;
    void *read_buffer;
    void *prog_buffer;
    void *lookahead_buffer;
    lfs_size_t name_max;
    lfs_size_t file_max;
    lfs_size_t attr_max;
    lfs_size_t metadata_max;
};

结构体lfs_info用于维护文件信息,包含文件类型,大小和文件名信息。

// File info structure
struct lfs_info {
    // Type of the file, either LFS_TYPE_REG or LFS_TYPE_DIR
    uint8_t type;

    // Size of the file, only valid for REG files. Limited to 32-bits.
    lfs_size_t size;

    // Name of the file stored as a null-terminated string. Limited to
    // LFS_NAME_MAX+1, which can be changed by redefining LFS_NAME_MAX to
    // reduce RAM. LFS_NAME_MAX is stored in superblock and must be
    // respected by other littlefs drivers.
    char name[LFS_NAME_MAX+1];
};

1.2 LiteOS-M LittleFS的结构体

我们来看下在文件components\fs\littlefs\lfs_api.h里定义的几个结构体。结构体LittleFsHandleStruct维护文件相关的信息,该结构体的成员包含是否使用,文件路径和lfs文件系统类型结构体lfs_t *lfsHandle和文件类型结构体lfs_file_t file。类似的,结构体FileDirInfo维护目录相关的信息,该结构体成员包含包含是否使用,目录名称和lfs文件系统类型结构体lfs_t *lfsHandle和目录类型结构体lfs_dir_t dir。另外一个结构体FileOpInfo维护文件操作信息。

typedef struct {
    uint8_t useFlag;
    const char *pathName;
    lfs_t *lfsHandle;
    lfs_file_t file;
} LittleFsHandleStruct;

struct FileOpInfo {
    uint8_t useFlag;
    const struct FileOps *fsVops;
    char *dirName;
    lfs_t lfsInfo;
};

typedef struct {
    uint8_t useFlag;
    char *dirName;
    lfs_t *lfsHandle;
    lfs_dir_t dir;
} FileDirInfo;

2、LiteOS-M LittleFS的重要全局变量及操作

了解下文件components\fs\littlefs\lfs_api.c定义的常用全局变量。⑴处的g_lfsDir数组维护目录信息,默认支持的目录数目为LFS_MAX_OPEN_DIRS,等于10。⑵处的g_fsOp数组维护针对每个挂载点的文件操作信息,默认挂载点数目LOSCFG_LFS_MAX_MOUNT_SIZE为3个。⑶处的g_handle数组维护文件信息,默认支持文件的数量LITTLE_FS_MAX_OPEN_FILES为100个。⑷处开始的struct dirent g_nameValue是目录项结构体变量,用于函数LfsReaddir();pthread_mutex_t g_FslocalMutex是互斥锁变量;g_littlefsMntName是挂载点名称数组。⑸处开始的挂载操作变量g_lfsMnt、文件操作操作全局变量g_lfsFops在虚拟文件系统中被使用。

⑴  FileDirInfo g_lfsDir[LFS_MAX_OPEN_DIRS] = {0};

⑵  struct FileOpInfo g_fsOp[LOSCFG_LFS_MAX_MOUNT_SIZE] = {0};
⑶  static LittleFsHandleStruct g_handle[LITTLE_FS_MAX_OPEN_FILES] = {0};
⑷  struct dirent g_nameValue;
    static pthread_mutex_t g_FslocalMutex = PTHREAD_MUTEX_INITIALIZER;
    static const char *g_littlefsMntName[LOSCFG_LFS_MAX_MOUNT_SIZE] = {"/a", "/b", "/c"};
    ......
⑸  const struct MountOps g_lfsMnt = {
        .Mount = LfsMount,
        .Umount = LfsUmount,
    };

    const struct FileOps g_lfsFops = {
        .Mkdir = LfsMkdir,
        .Unlink = LfsUnlink,
        .Rmdir = LfsRmdir,
        .Opendir = LfsOpendir,
        .Readdir = LfsReaddir,
        .Closedir = LfsClosedir,
        .Open = LfsOpen,
        .Close = LfsClose,
        .Write = LfsWrite,
        .Read = LfsRead,
        .Seek = LfsSeek,
        .Rename = LfsRename,
        .Getattr = LfsStat,
        .Fsync = LfsFsync,
        .Fstat = LfsFstat,
    };

下文继续介绍下和这些变量相关的内部操作接口。

2.1 目录信息数组操作

GetFreeDir()设置目录信息数组元素信息。参数dirName为目录名称。遍历目录信息数组,遍历到第一个未使用的元素标记其为已使用状态,设置目录名称,返回目录信息元素指针地址。如果遍历失败,返回NULL。函数FreeDirInfo()为函数GetFreeDir()的反向操作,根据目录名称设置对应的数组元素为未使用状态,并把GetFreeDir设置为NULL。

函数CheckDirIsOpen()用于检测目录是否已经打开。如果目录信息数组中记录着对应的目录信息,则标志着该目录已经打开。

FileDirInfo *GetFreeDir(const char *dirName)
{
    pthread_mutex_lock(&g_FslocalMutex);
    for (int i = 0; i < LFS_MAX_OPEN_DIRS; i++) {
        if (g_lfsDir[i].useFlag == 0) {
            g_lfsDir[i].useFlag = 1;
            g_lfsDir[i].dirName = strdup(dirName);
            pthread_mutex_unlock(&g_FslocalMutex);
            return &(g_lfsDir[i]);
        }
    }
    pthread_mutex_unlock(&g_FslocalMutex);
    return NULL;
}

void FreeDirInfo(const char *dirName)
{
    pthread_mutex_lock(&g_FslocalMutex);
    for (int i = 0; i < LFS_MAX_OPEN_DIRS; i++) {
        if (g_lfsDir[i].useFlag == 1 && strcmp(g_lfsDir[i].dirName, dirName) == 0) {
            g_lfsDir[i].useFlag = 0;
            if (g_lfsDir[i].dirName) {
                free(g_lfsDir[i].dirName);
                g_lfsDir[i].dirName = NULL;
            }
            pthread_mutex_unlock(&g_FslocalMutex);
        }
    }
    pthread_mutex_unlock(&g_FslocalMutex);
}

BOOL CheckDirIsOpen(const char *dirName)
{
    pthread_mutex_lock(&g_FslocalMutex);
    for (int i = 0; i < LFS_MAX_OPEN_DIRS; i++) {
        if (g_lfsDir[i].useFlag == 1) {
            if (strcmp(g_lfsDir[i].dirName, dirName) == 0) {
                pthread_mutex_unlock(&g_FslocalMutex);
                return TRUE;
            }
        }
    }
    pthread_mutex_unlock(&g_FslocalMutex);
    return FALSE;
}

©著作权归作者所有,如需转载,请注明出处,否则将追究法律责任
已于2022-1-9 14:52:01修改
3
收藏 2
回复
举报
回复
添加资源
添加资源将有机会获得更多曝光,你也可以直接关联已上传资源 去关联
    相关推荐