十道腾讯算法真题解析!(一)
前言
大家好,我是捡田螺的小男孩。收集了腾讯常考的十道算法题(真题)。在金三银四,希望对大家有帮助呀。
- 重排链表
- 最长递增子序列
- 环形链表
- 反转链表
- 最长回文子串
- 全排列
- LRU 缓存
- 合并K个升序链表
- 无重复字符的最长子串
- 删除链表的倒数第 N 个结点
1. 重排链表
给定一个单链表 L 的头节点 head ,单链表 L 表示为:
L0 → L1 → … → Ln - 1 → Ln
请将其重新排列后变为:
L0 → Ln → L1 → Ln - 1 → L2 → Ln - 2 → …
输入:
head = [1,2,3,4]
输出:
[1,4,2,3]
思路:
如果是数组就好了,哈哈,因为数组可以直接通过下标访问,很容易就可以解答这道题了。但是这是链表。链表不支持下标访问,我们没办法随机访问到链表任意位置的元素,怎么办呢?
我们可以先遍历一下,用数组把链表的元素按顺序存储起来呀,然后就可以把它当做数组这么访问来用了对吧,最后重建下链表即可啦。
ArrayList的底层就是数组,我们先用它存储链表就好,如下:
List<ListNode> list = new ArrayList<ListNode>();
ListNode node = head;
while (node != null) {
list.add(node);
node = node.next;
}
有了一个数组结构的链表后,如何重建链表呢?回头多看示例两眼,很容易就发小规律啦:先排第1个,再排倒数第1个,接着排第2个,紧接着倒数第2个。显然这个规律很明显,代码也比较好实现:
int i = 0;
int j = list.size()-1;
while(i<j){
list.get(i).next = list.get(j);
i++;
if(i==j){
break;
}
list.get(j).next = list.get(i);
j--;
}
//大家画个图就很清晰知道为什么需要这行了,哈哈
list.get(i).next = null;
完整实现代码如下:
class Solution {
public void reorderList(ListNode head) {
if (head == null) {
return;
}
List<ListNode> list = new ArrayList<ListNode>();
ListNode node = head;
while (node != null) {
list.add(node);
node = node.next;
}
int i = 0, j = list.size() - 1;
while (i < j) {
list.get(i).next = list.get(j);
i++;
if (i == j) {
break;
}
list.get(j).next = list.get(i);
j--;
}
list.get(i).next = null;
}
}
2. 最长递增子序列
给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。
实例1:
输入:nums = [10,9,2,5,3,7,101,18]
输出:4
解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。
实例2:
输入:nums = [0,1,0,3,2,3]
输出:4
思路:
这道题是求最值问题,可以使用动态规划解决。动态规划的解题整体思路就是:
- 穷举分析
- 分析找规律,拆分子问题
- 确定边界
- 确定最优子结构
- 写出状态转移方程
2.1 穷举分析
动态规划的核心思想包括拆分子问题,记住过往,减少重复计算。所以我们在思考原问题:数组num[i]的最长递增子序列长度时,可以思考下相关子问题,比如原问题是否跟子问题num[i-1]的最长递增子序列长度有关呢?
自底向上的穷举过程:
- 当nums只有一个元素10时,最长递增子序列是[10],长度是1.
- 当nums需要加入一个元素9时,最长递增子序列是[10]或者[9],长度是1。
- 当nums再加入一个元素2时,最长递增子序列是[10]或者[9]或者[2],长度是1。
- 当nums再加入一个元素5时,最长递增子序列是[2,5],长度是2。
- 当nums再加入一个元素3时,最长递增子序列是[2,5]或者[2,3],长度是2。
- 当nums再加入一个元素7时,,最长递增子序列是[2,5,7]或者[2,3,7],长度是3。
- 当nums再加入一个元素101时,最长递增子序列是[2,5,7,101]或者[2,3,7,101],长度是4。
- 当nums再加入一个元素18时,最长递增子序列是[2,5,7,101]或者[2,3,7,101]或者[2,5,7,18]或者[2,3,7,18],长度是4。
- 当nums再加入一个元素7时,最长递增子序列是[2,5,7,101]或者[2,3,7,101]或者[2,5,7,18]或者[2,3,7,18],长度是4.
2.2 分析找规律,拆分子问题
通过上面分析,我们可以发现一个规律:
如果新加入一个元素nums[i], 最长递增子序列要么是以nums[i]结尾的递增子序列,要么就是nums[i-1]的最长递增子序列。看到这个,是不是很开心,nums[i]的最长递增子序列已经跟子问题 nums[i-1]的最长递增子序列有关联了。
原问题数组nums[i]的最长递增子序列 = 子问题数组nums[i-1]的最长递增子序列/nums[i]结尾的最长递增子序列
是不是感觉成功了一半呢?但是如何把nums[i]结尾的递增子序列也转化为对应的子问题呢?要是nums[i]结尾的递增子序列也跟nums[i-1]的最长递增子序列有关就好了。又或者nums[i]结尾的最长递增子序列,跟前面子问题num[j](0=<j<i)结尾的最长递增子序列有关就好了,带着这个想法,我们又回头看看穷举的过程:
nums[i]的最长递增子序列,不就是从以数组num[i]每个元素结尾的最长子序列集合,取元素最多(也就是长度最长)那个嘛,所以原问题,我们转化成求出以数组nums每个元素结尾的最长子序列集合,再取最大值嘛。哈哈,想到这,我们就可以用dp[i]表示以num[i]这个数结尾的最长递增子序列的长度啦,然后再来看看其中的规律:
其实,nums[i]结尾的自增子序列,只要找到比nums[i]小的子序列,加上nums[i] 就可以啦。显然,可能形成多种新的子序列,我们选最长那个,就是dp[i]的值啦
- nums[3]=5,以5结尾的最长子序列就是[2,5],因为从数组下标0到3遍历,只找到了子序列[2]比5小,所以就是[2]+[5]啦,即dp[4]=2
- nums[4]=3,以3结尾的最长子序列就是[2,3],因为从数组下标0到4遍历,只找到了子序列[2]比3小,所以就是[2]+[3]啦,即dp[4]=2
- nums[5]=7,以7结尾的最长子序列就是[2,5,7]和[2,3,7],因为从数组下标0到5遍历,找到2,5和3都比7小,所以就有[2,7],[5,7],[3,7],[2,5,7]和[2,3,7]这些子序列,最长子序列就是[2,5,7]和[2,3,7],它俩不就是以5结尾和3结尾的最长递增子序列+[7]来的嘛!所以,dp[5]=3 =dp[3]+1=dp[4]+1。
很显然有这个规律:一个以nums[i]结尾的数组nums - 如果存在j属于区间[0,i-1],并且num[i]>num[j]的话,则有:dp(i) =max(dp(j))+1。
2.3 确定边界
当nums数组只有一个元素时,最长递增子序列的长度dp(1)=1,当nums数组有两个元素时,dp(2) =2或者1, 因此边界就是dp(1)=1。
2.4 确定最优子结构
从2.2 穷举分析找规律,我们可以得出,以下的最优结构:
dp(i) =max(dp(j))+1,存在j属于区间[0,i-1],并且num[i]>num[j]。
max(dp(j)) 就是最优子结构。
2.5 写出状态转移方程
通过前面分析,我们就可以得出状态转移方程啦:
所以数组nums[i]的最长递增子序列就是:
最长递增子序列 =max(dp[i])
完整代码实现如下:
class Solution {
public int lengthOfLIS(int[] nums) {
if (nums.length == 0) {
return 0;
}
int[] dp = new int[nums.length];
//初始化就是边界情况
dp[0] = 1;
int maxans = 1;
//自底向上遍历
for (int i = 1; i < nums.length; i++) {
dp[i] = 1;
//从下标0到i遍历
for (int j = 0; j < i; j++) {
//找到前面比nums[i]小的数nums[j],即有dp[i]= dp[j]+1
if (nums[j] < nums[i]) {
//因为会有多个小于nums[i]的数,也就是会存在多种组合了嘛,我们就取最大放到dp[i]
dp[i] = Math.max(dp[i], dp[j] + 1);
}
}
//求出dp[i]后,dp最大那个就是nums的最长递增子序列啦
maxans = Math.max(maxans, dp[i]);
}
return maxans;
}
}
3. 环形链表
给定一个链表的头节点head ,返回链表开始入环的第一个节点。如果链表无环,则返回 null。
实例:
输入:head = [3,2,0,-4], pos = 1
输出:返回索引为 1 的链表节点
解释:链表中有一个环,其尾部连接到第二个节点。
如果判断链表是否有环,我们可以使用快慢指针,快指针是慢指针速度的两倍,当两个指针相遇时,即表示有环。
boolean hasCycle(ListNode head ){
ListNode slow = head;
ListNode fast = head;
while(fast!=null && fast.next!=null){
fast = fast.next.next;
slow = slow.next;
if(fast==slow){
return true;
}
}
return false;
}
我们可以很容易就判断有环,但是如何返回入环的第一个节点呢?我们来画个图分析一波:
假设起点为A,入环点为B,快慢指针相遇点为C,慢指针走到相遇点为k步,B到C的距离为m。设环型周长为X。因为快指针速度是慢指针的2倍。则有:
K-m + X + m = 2K = 快指针走的举例
所以周长X = K。相遇后,快指针到继续往前走,走到入环点B,刚好距离是X-m = K-m。而起点到B节点,距离也是K-m。因此,快慢指针相遇后,慢指针回到起点,这时候快慢指针一样的速度走,相遇时,就是入环点啦,是不是无巧不成书呀,哈哈哈。
完整代码如下:
public class Solution {
public ListNode detectCycle(ListNode head) {
if(head ==null){
return null;
}
ListNode fast = head;
ListNode slow = head;
while(fast!=null&&fast.next!=null){
fast = fast.next.next;
slow = slow.next;
//快慢指针相等表示有环
if(slow==fast){
//回到起点一起相同速度走
while(head!=fast){
head = head.next;
fast = fast.next;
}
return head;
}
}
return null;
}
}
4. 反转链表
给你单链表的头节点 head ,请你反转链表,并返回反转后的链表。
输入:head = [1,2,3,4,5]
输出:[5,4,3,2,1]
完整代码如下:
class Solution {
public ListNode reverseList(ListNode head) {
ListNode prev = null;
ListNode next = head;
ListNode curr = head ;
while(curr!=null){
next = curr.next ;
curr. next = prev;
prev = curr ;
curr = next ;
}
return prev;
}
}
之前图解过这道题,大家可以看下哈:
看一遍就理解,图解单链表反转
文章转自公众号:小白debug