没想到,为了一个限流我写了1万字!(一)

发布于 2022-6-10 16:01
浏览
0收藏

 

限流作为现在微服务中常见的稳定性措施,在面试中肯定也是经常会被问到的,我在面试的时候也经常喜欢问一下你对限流算法知道哪一些?有看过源码吗?实现原理是什么?

第一部分先讲讲限流算法,最后再讲讲源码的实现原理。

限流算法

关于限流的算法大体上可以分为四类:固定窗口计数器、滑动窗口计数器、漏桶(也有称漏斗,英文Leaky bucket)、令牌桶(英文Token bucket)。

固定窗口
固定窗口,相比其他的限流算法,这应该是最简单的一种。

它简单地对一个固定的时间窗口内的请求数量进行计数,如果超过请求数量的阈值,将被直接丢弃。

这个简单的限流算法优缺点都很明显。优点的话就是简单,缺点举个例子来说。

比如我们下图中的黄色区域就是固定时间窗口,默认时间范围是60s,限流数量是100。

如图中括号内所示,前面一段时间都没有流量,刚好后面30秒内来了100个请求,此时因为没有超过限流阈值,所以请求全部通过,然后下一个窗口的20秒内同样通过了100个请求。

所以变相的相当于在这个括号的40秒的时间内就通过了200个请求,超过了我们限流的阈值。

没想到,为了一个限流我写了1万字!(一)-开源基础软件社区

 限流

滑动窗口
为了优化这个问题,于是有了滑动窗口算法,顾名思义,滑动窗口就是时间窗口在随着时间推移不停地移动。

滑动窗口把一个固定时间窗口再继续拆分成N个小窗口,然后对每个小窗口分别进行计数,所有小窗口请求之和不能超过我们设定的限流阈值。

以下图举例子来说,假设我们的窗口拆分成了3个小窗口,小窗口都是20s,同样基于上面的例子,当在第三个20s的时候来了100个请求,可以通过。

然后时间窗口滑动,下一个20s请求又来了100个请求,此时我们滑动窗口的60s范围内请求数量肯定就超过100了啊,所以请求被拒绝。

 没想到,为了一个限流我写了1万字!(一)-开源基础软件社区
漏桶Leaky bucket
漏桶算法,人如其名,他就是一个漏的桶,不管请求的数量有多少,最终都会以固定的出口流量大小匀速流出,如果请求的流量超过漏桶大小,那么超出的流量将会被丢弃。

也就是说流量流入的速度是不定的,但是流出的速度是恒定的。

这个和MQ削峰填谷的思想比较类似,在面对突然激增的流量的时候,通过漏桶算法可以做到匀速排队,固定速度限流。

漏桶算法的优势是匀速,匀速是优点也是缺点,很多人说漏桶不能处理突增流量,这个说法并不准确。

漏桶本来就应该是为了处理间歇性的突增流量,流量一下起来了,然后系统处理不过来,可以在空闲的时候去处理,防止了突增流量导致系统崩溃,保护了系统的稳定性。

但是,换一个思路来想,其实这些突增的流量对于系统来说完全没有压力,你还在慢慢地匀速排队,其实是对系统性能的浪费。

所以,对于这种有场景来说,令牌桶算法比漏桶就更有优势。

令牌桶token bucket
令牌桶算法是指系统以一定地速度往令牌桶里丢令牌,当一个请求过来的时候,会去令牌桶里申请一个令牌,如果能够获取到令牌,那么请求就可以正常进行,反之被丢弃。

现在的令牌桶算法,像Guava和Sentinel的实现都有冷启动/预热的方式,为了避免在流量激增的同时把系统打挂,令牌桶算法会在最开始一段时间内冷启动,随着流量的增加,系统会根据流量大小动态地调整生成令牌的速度,最终直到请求达到系统的阈值。

源码举例

我们以sentinel举例,sentinel中统计用到了滑动窗口算法,然后也有用到漏桶、令牌桶算法。

滑动窗口
sentinel中就使用到了滑动窗口算法来进行统计,不过他的实现和我上面画的图有点不一样,实际上sentinel中的滑动窗口用一个圆形来描述更合理一点。

前期就是创建节点,然后slot串起来就是一个责任链模式,StatisticSlot通过滑动窗口来统计数据,FlowSlot是真正限流的逻辑,还有一些降级、系统保护的措施,最终形成了整个sentinel的限流方式。

没想到,为了一个限流我写了1万字!(一)-开源基础软件社区

 就看看官方图吧,这圆形画起来好恶心

滑动窗口的实现主要可以看LeapArray的代码,默认的话定义了时间窗口的相关参数。

对于sentinel来说其实窗口分为秒和分钟两个级别,秒的话窗口数量是2,分钟则是60个窗口,每个窗口的时间长度是1s,总的时间周期就是60s,分成60个窗口,这里我们就以分钟级别的统计来说。

public abstract class LeapArray<T> {
    //窗口时间长度,毫秒数,默认1000ms
    protected int windowLengthInMs;
    //窗口数量,默认60
    protected int sampleCount;
    //毫秒时间周期,默认60*1000
    protected int intervalInMs;
    //秒级时间周期,默认60
    private double intervalInSecond;
    //时间窗口数组
    protected final AtomicReferenceArray<WindowWrap<T>> array;

然后我们要看的就是它是怎么计算出当前窗口的,其实源码里写的听清楚的,但是如果你按照之前想象把他当做一条直线延伸去想的话估计不太好理解。

首先计算数组索引下标和时间窗口时间这个都比较简单,难点应该大部分在于第三点窗口大于old这个是什么鬼,详细说下这几种情况。

  1. 数组中的时间窗口是是空的,这个说明时间走到了我们初始化的时间之后了,此时new一个新的窗口通过CAS的方式去更新,然后返回这个新的窗口就好了。
  2. 第二种情况是刚好时间窗口的时间相等,那么直接返回,没啥好说的
  3. 第三种情况就是比较难以理解的,可以参看两条时间线的图,就比较好理解了,第一次时间窗口走完了达到1200,然后圆形时间窗口开始循环,新的时间起始位置还是1200,然后时间窗口的时间来到1676,B2的位置如果还是老的窗口那么就是600,所以我们要重置之前的时间窗口的时间为当前的时间。
  4. 最后一种一般情况不太可能发生,除非时钟回拨这样子
    从这个我们可以发现就是针对每个WindowWrap时间窗口都进行了统计,最后实际上在后面的几个地方都会用到时间窗口统计的QPS结果,这里就不再赘述了,知道即可。

 

文章转自公众号:艾小仙

分类
标签
已于2022-6-10 16:01:39修改
收藏
回复
举报
回复
添加资源
添加资源将有机会获得更多曝光,你也可以直接关联已上传资源 去关联
    相关推荐