微服务:剖析一下源码,Nacos的健康检查竟如此简单
前言
前面我们多次提到Nacos的健康检查,比如《微服务之:服务挂的太干脆,Nacos还没反应过来,怎么办?》一文中还对健康检查进行了自定义调优。那么,Nacos的健康检查和心跳机制到底是如何实现的呢?在项目实践中是否又可以参考Nacos的健康检查机制,运用于其他地方呢?
这篇文章,就带大家来揭开Nacos健康检查机制的面纱。
Nacos的健康检查
Nacos中临时实例基于心跳上报方式维持活性,基本的健康检查流程基本如下:Nacos客户端会维护一个定时任务,每隔5秒发送一次心跳请求,以确保自己处于活跃状态。Nacos服务端在15秒内如果没收到客户端的心跳请求,会将该实例设置为不健康,在30秒内没收到心跳,会将这个临时实例摘除。
原理很简单,关于代码层的实现,下面来就逐步来进行解析。
客户端的心跳
实例基于心跳上报的形式来维持活性,当然就离不开心跳功能的实现了。这里以客户端心跳实现为基准来进行分析。
Spring Cloud提供了一个标准接口ServiceRegistry,Nacos对应的实现类为NacosServiceRegistry。Spring Cloud项目启动时会实例化NacosServiceRegistry,并调用它的register方法来进行实例的注册。
@Override
public void register(Registration registration) {
// ...
NamingService namingService = namingService();
String serviceId = registration.getServiceId();
String group = nacosDiscoveryProperties.getGroup();
Instance instance = getNacosInstanceFromRegistration(registration);
try {
namingService.registerInstance(serviceId, group, instance);
log.info("nacos registry, {} {} {}:{} register finished", group, serviceId,
instance.getIp(), instance.getPort());
}catch (Exception e) {
// ...
}
}
在该方法中有两处需要注意,第一处是构建Instance的getNacosInstanceFromRegistration方法,该方法内会设置Instance的元数据(metadata),通过源元数据可以配置服务器端健康检查的参数。比如,在Spring Cloud中配置的如下参数,都可以通过元数据项在服务注册时传递给Nacos的服务端。
spring:
application:
name: user-service-provider
cloud:
nacos:
discovery:
server-addr: 127.0.0.1:8848
heart-beat-interval: 5000
heart-beat-timeout: 15000
ip-delete-timeout: 30000
其中的heart-beat-interval、heart-beat-timeout、ip-delete-timeout这些健康检查的参数,都是基于元数据上报上去的。
register方法的第二处就是调用NamingService#registerInstance来进行实例的注册。NamingService是由Nacos的客户端提供,也就是说Nacos客户端的心跳本身是由Nacos生态提供的。
在registerInstance方法中最终会调用到下面的方法:
@Override
public void registerInstance(String serviceName, String groupName, Instance instance) throws NacosException {
NamingUtils.checkInstanceIsLegal(instance);
String groupedServiceName = NamingUtils.getGroupedName(serviceName, groupName);
if (instance.isEphemeral()) {
BeatInfo beatInfo = beatReactor.buildBeatInfo(groupedServiceName, instance);
beatReactor.addBeatInfo(groupedServiceName, beatInfo);
}
serverProxy.registerService(groupedServiceName, groupName, instance);
}
其中BeatInfo#addBeatInfo便是进行心跳处理的入口。当然,前提条件是当前的实例需要是临时(瞬时)实例。
对应的方法实现如下:
public void addBeatInfo(String serviceName, BeatInfo beatInfo) {
NAMING_LOGGER.info("[BEAT] adding beat: {} to beat map.", beatInfo);
String key = buildKey(serviceName, beatInfo.getIp(), beatInfo.getPort());
BeatInfo existBeat = null;
//fix #1733
if ((existBeat = dom2Beat.remove(key)) != null) {
existBeat.setStopped(true);
}
dom2Beat.put(key, beatInfo);
executorService.schedule(new BeatTask(beatInfo), beatInfo.getPeriod(), TimeUnit.MILLISECONDS);
MetricsMonitor.getDom2BeatSizeMonitor().set(dom2Beat.size());
}
在倒数第二行可以看到,客户端是通过定时任务来处理心跳的,具体的心跳请求由BeatTask完成。定时任务的执行频次,封装在BeatInfo,回退往上看,会发现BeatInfo的Period来源于Instance#getInstanceHeartBeatInterval()。该方法具体实现如下:
public long getInstanceHeartBeatInterval() {
return this.getMetaDataByKeyWithDefault("preserved.heart.beat.interval", Constants.DEFAULT_HEART_BEAT_INTERVAL);
}
可以看出定时任务的执行间隔就是配置的metadata中的数据preserved.heart.beat.interval,与上面提到配置heart-beat-interval本质是一回事,默认是5秒。
BeatTask类具体实现如下:
class BeatTask implements Runnable {
BeatInfo beatInfo;
public BeatTask(BeatInfo beatInfo) {
this.beatInfo = beatInfo;
}
@Override
public void run() {
if (beatInfo.isStopped()) {
return;
}
long nextTime = beatInfo.getPeriod();
try {
JsonNode result = serverProxy.sendBeat(beatInfo, BeatReactor.this.lightBeatEnabled);
long interval = result.get("clientBeatInterval").asLong();
boolean lightBeatEnabled = false;
if (result.has(CommonParams.LIGHT_BEAT_ENABLED)) {
lightBeatEnabled = result.get(CommonParams.LIGHT_BEAT_ENABLED).asBoolean();
}
BeatReactor.this.lightBeatEnabled = lightBeatEnabled;
if (interval > 0) {
nextTime = interval;
}
int code = NamingResponseCode.OK;
if (result.has(CommonParams.CODE)) {
code = result.get(CommonParams.CODE).asInt();
}
if (code == NamingResponseCode.RESOURCE_NOT_FOUND) {
Instance instance = new Instance();
instance.setPort(beatInfo.getPort());
instance.setIp(beatInfo.getIp());
instance.setWeight(beatInfo.getWeight());
instance.setMetadata(beatInfo.getMetadata());
instance.setClusterName(beatInfo.getCluster());
instance.setServiceName(beatInfo.getServiceName());
instance.setInstanceId(instance.getInstanceId());
instance.setEphemeral(true);
try {
serverProxy.registerService(beatInfo.getServiceName(),
NamingUtils.getGroupName(beatInfo.getServiceName()), instance);
} catch (Exception ignore) {
}
}
} catch (NacosException ex) {
NAMING_LOGGER.error("[CLIENT-BEAT] failed to send beat: {}, code: {}, msg: {}",
JacksonUtils.toJson(beatInfo), ex.getErrCode(), ex.getErrMsg());
}
executorService.schedule(new BeatTask(beatInfo), nextTime, TimeUnit.MILLISECONDS);
}
}
在run方法中通过NamingProxy#sendBeat完成了心跳请求的发送,而在run方法的最后,再次开启了一个定时任务,这样周期性的进行心跳请求。
NamingProxy#sendBeat方法实现如下:
public JsonNode sendBeat(BeatInfo beatInfo, boolean lightBeatEnabled) throws NacosException {
if (NAMING_LOGGER.isDebugEnabled()) {
NAMING_LOGGER.debug("[BEAT] {} sending beat to server: {}", namespaceId, beatInfo.toString());
}
Map<String, String> params = new HashMap<String, String>(8);
Map<String, String> bodyMap = new HashMap<String, String>(2);
if (!lightBeatEnabled) {
bodyMap.put("beat", JacksonUtils.toJson(beatInfo));
}
params.put(CommonParams.NAMESPACE_ID, namespaceId);
params.put(CommonParams.SERVICE_NAME, beatInfo.getServiceName());
params.put(CommonParams.CLUSTER_NAME, beatInfo.getCluster());
params.put("ip", beatInfo.getIp());
params.put("port", String.valueOf(beatInfo.getPort()));
String result = reqApi(UtilAndComs.nacosUrlBase + "/instance/beat", params, bodyMap, HttpMethod.PUT);
return JacksonUtils.toObj(result);
}
实际上,就是调用了Nacos服务端提供的"/nacos/v1/ns/instance/beat"服务。
在客户端的常量类Constants中定义了心跳相关的默认参数:
static {
DEFAULT_HEART_BEAT_TIMEOUT = TimeUnit.SECONDS.toMillis(15L);
DEFAULT_IP_DELETE_TIMEOUT = TimeUnit.SECONDS.toMillis(30L);
DEFAULT_HEART_BEAT_INTERVAL = TimeUnit.SECONDS.toMillis(5L);
}
这样就呼应了最开始说的Nacos健康检查机制的几个时间维度。
服务端接收心跳
分析客户端的过程中已经可以看出请求的是/nacos/v1/ns/instance/beat这个服务。Nacos服务端是在Naming项目中的InstanceController中实现的。
@CanDistro
@PutMapping("/beat")
@Secured(parser = NamingResourceParser.class, action = ActionTypes.WRITE)
public ObjectNode beat(HttpServletRequest request) throws Exception {
// ...
Instance instance = serviceManager.getInstance(namespaceId, serviceName, clusterName, ip, port);
if (instance == null) {
// ...
instance = new Instance();
instance.setPort(clientBeat.getPort());
instance.setIp(clientBeat.getIp());
instance.setWeight(clientBeat.getWeight());
instance.setMetadata(clientBeat.getMetadata());
instance.setClusterName(clusterName);
instance.setServiceName(serviceName);
instance.setInstanceId(instance.getInstanceId());
instance.setEphemeral(clientBeat.isEphemeral());
serviceManager.registerInstance(namespaceId, serviceName, instance);
}
Service service = serviceManager.getService(namespaceId, serviceName);
// ...
service.processClientBeat(clientBeat);
// ...
return result;
}
服务端在接收到请求时,主要做了两件事:第一,如果发送心跳的实例不存在,则将其进行注册;第二,调用其Service的processClientBeat方法进行心跳处理。
processClientBeat方法实现如下:
public void processClientBeat(final RsInfo rsInfo) {
ClientBeatProcessor clientBeatProcessor = new ClientBeatProcessor();
clientBeatProcessor.setService(this);
clientBeatProcessor.setRsInfo(rsInfo);
HealthCheckReactor.scheduleNow(clientBeatProcessor);
}
ClientBeatProcessor同样是一个实现了Runnable的Task,通过HealthCheckReactor定义的scheduleNow方法进行立即执行。
scheduleNow方法实现:
public static ScheduledFuture<?> scheduleNow(Runnable task) {
return GlobalExecutor.scheduleNamingHealth(task, 0, TimeUnit.MILLISECONDS);
}
再来看看ClientBeatProcessor中对具体任务的实现:
@Override
public void run() {
Service service = this.service;
// logging
String ip = rsInfo.getIp();
String clusterName = rsInfo.getCluster();
int port = rsInfo.getPort();
Cluster cluster = service.getClusterMap().get(clusterName);
List<Instance> instances = cluster.allIPs(true);
for (Instance instance : instances) {
if (instance.getIp().equals(ip) && instance.getPort() == port) {
// logging
instance.setLastBeat(System.currentTimeMillis());
if (!instance.isMarked()) {
if (!instance.isHealthy()) {
instance.setHealthy(true);
// logging
getPushService().serviceChanged(service);
}
}
}
}
}
在run方法中先检查了发送心跳的实例和IP是否一致,如果一致则更新最后一次心跳时间。同时,如果该实例之前未被标记且处于不健康状态,则将其改为健康状态,并将变动通过PushService提供事件机制进行发布。事件是由Spring的ApplicationContext进行发布,事件为ServiceChangeEvent。
通过上述心跳操作,Nacos服务端的实例的健康状态和最后心跳时间已经被刷新。那么,如果没有收到心跳时,服务器端又是如何判断呢?
服务端心跳检查
客户端发起心跳,服务器端来检查客户端的心跳是否正常,或者说对应的实例中的心跳更新时间是否正常。
服务器端心跳的触发是在服务实例注册时触发的,同样在InstanceController中,register注册实现如下:
@CanDistro
@PostMapping
@Secured(parser = NamingResourceParser.class, action = ActionTypes.WRITE)
public String register(HttpServletRequest request) throws Exception {
// ...
final Instance instance = parseInstance(request);
serviceManager.registerInstance(namespaceId, serviceName, instance);
return "ok";
}
ServiceManager#registerInstance实现代码如下:
public void registerInstance(String namespaceId, String serviceName, Instance instance) throws NacosException {
createEmptyService(namespaceId, serviceName, instance.isEphemeral());
// ...
}
心跳相关实现在第一次创建空的Service中实现,最终会调到如下方法:
public void createServiceIfAbsent(String namespaceId, String serviceName, boolean local, Cluster cluster)
throws NacosException {
Service service = getService(namespaceId, serviceName);
if (service == null) {
Loggers.SRV_LOG.info("creating empty service {}:{}", namespaceId, serviceName);
service = new Service();
service.setName(serviceName);
service.setNamespaceId(namespaceId);
service.setGroupName(NamingUtils.getGroupName(serviceName));
// now validate the service. if failed, exception will be thrown
service.setLastModifiedMillis(System.currentTimeMillis());
service.recalculateChecksum();
if (cluster != null) {
cluster.setService(service);
service.getClusterMap().put(cluster.getName(), cluster);
}
service.validate();
putServiceAndInit(service);
if (!local) {
addOrReplaceService(service);
}
}
}
在putServiceAndInit方法中对Service进行初始化:
private void putServiceAndInit(Service service) throws NacosException {
putService(service);
service = getService(service.getNamespaceId(), service.getName());
service.init();
consistencyService
.listen(KeyBuilder.buildInstanceListKey(service.getNamespaceId(), service.getName(), true), service);
consistencyService
.listen(KeyBuilder.buildInstanceListKey(service.getNamespaceId(), service.getName(), false), service);
Loggers.SRV_LOG.info("[NEW-SERVICE] {}", service.toJson());
}
service.init()方法实现:
public void init() {
HealthCheckReactor.scheduleCheck(clientBeatCheckTask);
for (Map.Entry<String, Cluster> entry : clusterMap.entrySet()) {
entry.getValue().setService(this);
entry.getValue().init();
}
}
HealthCheckReactor#scheduleCheck方法实现:
public static void scheduleCheck(ClientBeatCheckTask task) {
futureMap.computeIfAbsent(task.taskKey(),
k -> GlobalExecutor.scheduleNamingHealth(task, 5000, 5000, TimeUnit.MILLISECONDS));
}
延迟5秒执行,每5秒检查一次。
在init方法的第一行便可以看到执行健康检查的Task,具体Task是由ClientBeatCheckTask来实现,对应的run方法核心代码如下:
@Override
public void run() {
// ...
List<Instance> instances = service.allIPs(true);
// first set health status of instances:
for (Instance instance : instances) {
if (System.currentTimeMillis() - instance.getLastBeat() > instance.getInstanceHeartBeatTimeOut()) {
if (!instance.isMarked()) {
if (instance.isHealthy()) {
instance.setHealthy(false);
// logging...
getPushService().serviceChanged(service);
ApplicationUtils.publishEvent(new InstanceHeartbeatTimeoutEvent(this, instance));
}
}
}
}
if (!getGlobalConfig().isExpireInstance()) {
return;
}
// then remove obsolete instances:
for (Instance instance : instances) {
if (instance.isMarked()) {
continue;
}
if (System.currentTimeMillis() - instance.getLastBeat() > instance.getIpDeleteTimeout()) {
// delete instance
deleteIp(instance);
}
}
}
在第一个for循环中,先判断当前时间与上次心跳时间的间隔是否大于超时时间。如果实例已经超时,且为被标记,且健康状态为健康,则将健康状态设置为不健康,同时发布状态变化的事件。
在第二个for循环中,如果实例已经被标记则跳出循环。如果未标记,同时当前时间与上次心跳时间的间隔大于删除IP时间,则将对应的实例删除。
小结
通过本文的源码分析,我们从Spring Cloud开始,追踪到Nacos Client中的心跳时间,再追踪到Nacos服务端接收心跳的实现和检查实例是否健康的实现。想必通过整个源码的梳理,你已经对整个Nacos心跳的实现有所了解。关注我,持续更新Nacos的最新干货。
文章转载自公众号:程序员新视界