#冲刺创作新星#基于PIE-Engine的水体频率变化遥感监测自动 原创
本次app是一个水体变化频率的变化监测,这个UI界面的设计中首先是标题,然后就是区域水体变化及监测的范围和时间选择,以及我们所选择监测的指数,NDWI,ADWI,MNDWI,随机森林的结果。这里面有一个非常大的限制,虽然再APP中有注释,注:虽然随机森林的提取最好,但是运算量大,计算时间长,可能会报错,请用户合理选择,但是选择其它指数的计算依旧无法现象。这里的归一化植被指数的函数,以及其它的结果:
normalizedDifference(bandNames)
指定两个特定波段,计算(Band1-Band2)/(Band1+Band2)的值。
方法参数:
- image(Image)
Image实例。
- bandNames(List)
Image的波段名称列表,包含两个元素。
返回值:像素值类型为布尔值的Image对象。
ui.Panel(widgets,layout,style)
容器组件。
方法参数:
- ui(ui)
调用者:ui对象。
- widgets(List)
组件列表
- layout(Object)
容器布局
- style(Object)
组件样式
返回值:ui.Panel
ui.root.add(widget)
添加组件。
方法参数:
- ui(ui)
调用者:ui对象。
- widget(String)
UI组件实例。
返回值:ui.root
代码:
/**
* @Name : 基于PIE-Engine的水体频率变化长时序遥感监测自动计算平台
* @Time : 2021/06/30
* @Author : 中国地质大学(武汉)水体频率小组
* @Desc : -2基于水体频率的水体类别变化检测及面积对比
* @Source
//设定变量
var layerKey = null;
var roiKey = null;
var selectStartYear = "2016"; //选择开始年份
var selectEndYear = "2020"; //选择结束年份
var selectLBp1 = "114.338";
var selectLBp2 = "30.517";
var selectRTp1 = "114.469";
var selectRTp2 = "30.604"; //自定义感兴趣区域
var selectway = "NDWI"; //选择方法
//获取研究区域
function getROI(x1, y1, x2, y2) {
var s1 = parseFloat(x1);
var s2 = parseFloat(y1);
var p1 = parseFloat(x2);
var p2 = parseFloat(y2);
// 研究区
var roi = pie.Geometry.Rectangle([
[s1, s2],
[p1, p2]
], null);
Map.centerObject(roi, 10);
Map.addLayer(roi, { color: "#ff0000", fillColor: "#00000000" }, "roi", true);
return roi;
}
//计算NDWI
function NDWI(image) {
var ndwi = image.normalizedDifference(['B3', 'B5'])
var label = ndwi.gt(0).rename("Label");
return label;
}
//计算AWEI
function AWEI(image) {
var awei = image.select(["B2", "B3", "B5", "B6", "B7"]).expression(
'B2+2.5*B3-1.5*(B5+B6)-0.25*B7', {
B2: image.select("B2"),
B3: image.select("B3"),
B5: image.select("B5"),
B6: image.select("B6"),
B7: image.select("B7"),
}).rename('AWEI');
return awei.gt(0);
};
//计算MNDWI
function MNDWI(image) {
var mndwi = image.normalizedDifference(['B3', 'B6']).gt(0).rename('mNDWI');
return mndwi;
}
//训练样本波段范围0-5000,LC08/02/SR数据集范围0-50000,除以10处理
function divide10(image) {
return imgd10 = image.divide(10);
}
///////////////////////////////////////////////机器学习分类水体/////////////////////////////////////////
//加载机器学习的样本点和预测波段以及随机森林
function Machinelearning(images) {
// 添加训练样本
var TrainingPoints = pie.FeatureCollection('user/pieadmin/ALLALL');
// 预测使用的波段
var bands = ['B2', 'B3', 'B4', 'B5', 'B6', 'B7', 'NDVI', 'mNDWI', 'AWEI'];
// 分类标签
var label = 'waterclass';
// 随机森林
var classifer = pie.Classifier.rTrees().train(TrainingPoints, label, bands);
//水体指数的波段添加,然后分别然给影像都进行一次,
function water_index(img) {
var image = img.select(["B2", "B3", "B4", "B5", "B6", "B7"]);
var ndvi = image.normalizedDifference(['B5', 'B4']).rename('NDVI');
var mndwi = image.normalizedDifference(['B3', 'B6']).rename('mNDWI');
var awei = image.select(["B2", "B3", "B5", "B6", "B7"]).expression(
'B2+2.5*B3-1.5*(B5+B6)-0.25*B7', {
B2: image.select("B2"),
B3: image.select("B3"),
B5: image.select("B5"),
B6: image.select("B6"),
B7: image.select("B7"),
}).rename('AWEI');
return img.addBands(ndvi).addBands(mndwi).addBands(awei);
}
var image = images.map(water_index);
var resultImage = image.map(function(image) {
var Rfiamge = image.select(bands).classify(classifer);
return Rfiamge;
});
return resultImage;
}
//去云
function maskL8sr(image) {
var qa = image.select('QA_PIXEL');
var mask = qa.bitwiseAnd(1 << 3).eq(0)
.and(qa.bitwiseAnd(1 << 4).eq(0))
.and(qa.bitwiseAnd(1 << 5).eq(0));
return image.updateMask(mask);
}
//计算有效像元,这里随便选择一个波段就行了,因为所有的波段都进行了掩膜了
function validPixel(image) {
return image.select('B2').gte(0);
};
// 计算水体频率
function Frequency(images, roi, selectway) {
var pixel_validNumber = images.map(validPixel).sum().clip(roi);
switch (selectway) {
case "NDWI":
var water_validNumber = images.map(NDWI).sum().clip(roi);
break;
case "AWEI":
var water_validNumber = images.map(AWEI).sum().clip(roi);
break;
case "MNDWI":
var water_validNumber = images.map(MNDWI).sum().clip(roi);
break;
case "随机森林":
var water_validNumber = Machinelearning(images.map(divide10)).sum().clip(roi);
break;
}
var waterFrequency = water_validNumber.divide(pixel_validNumber).rename('frequency');
//获得永久性水体
var PermanentWater = waterFrequency.gte(0.75).rename("waterclass");
//获得季节性水体
var mask1 = waterFrequency.gte(0.25);
var mask2 = waterFrequency.lt(0.75);
var SensonalWater = pie.ImageCollection.fromImages([mask1, mask2]).sum().eq(2).rename('waterclass');
//获得陆地小于0.25的水频率
var Land = waterFrequency.lt(0.25).rename("waterclass");
//0-1值影像乘积操作
var PW = PermanentWater.multiply(4);
var SW = SensonalWater.multiply(2);
var LD = Land.multiply(1);
//合成影像集
var PSL = pie.ImageCollection.fromImages([PW, SW, LD]).sum().select('waterclass');
return PSL;
}
//点击按钮所进行的
function clickBtn() {
var roi = getROI(selectLBp1, selectLBp2, selectRTp1, selectRTp2);
//获取影像集并进行预处理
var imageC1 = pie.ImageCollection('LC08/02/SR')
.filterBounds(roi)
.filterDate(selectStartYear + "-01-01", selectEndYear + "-12-31")
.select(["B2", "B3", "B4", "B5", "B6", "B7", "QA_PIXEL"])
.filter(pie.Filter.lt('cloud_cover', 30))
.map(maskL8sr);
var imageC2 = pie.ImageCollection('LC08/02/SR')
.filterBounds(roi)
.filterDate(selectEndYear + "-01-01", selectEndYear + "-12-31")
.select(["B2", "B3", "B4", "B5", "B6", "B7", "QA_PIXEL"])
.filter(pie.Filter.lt('cloud_cover', 30))
.map(maskL8sr);
//得到开始年份和结束年份的图像并相减得出变化图像
var frequency1 = Frequency(imageC1, roi, selectway);
var frequency2 = Frequency(imageC2, roi, selectway);
var change = frequency2.subtract(frequency1).rename("change");
//获得开始年份和结束年份的水体类别0-1值图
var PWC1 = frequency1.eq(4);
var SWC1 = frequency1.eq(2);
var Land1 = frequency1.eq(1);
var PWC2 = frequency2.eq(4);
var SWC2 = frequency2.eq(2);
var Land2 = frequency2.eq(1);
//计算面积
function countArea(image) {
var areaImage = image.updateMask(image).pixelArea().multiply(image);
var waterarea = areaImage.reduceRegion(pie.Reducer.sum(), roi, 300);
var image_area = image.set("Area", waterarea.get("constant"));
return image_area;
};
var WaterClassImgs1 = [];
var PWarea1 = countArea(PWC1);
WaterClassImgs1.push(PWarea1);
var SWarea1 = countArea(SWC1);
WaterClassImgs1.push(SWarea1);
var Landarea1 = countArea(Land1);
WaterClassImgs1.push(Landarea1);
var PWarea2 = countArea(PWC2);
WaterClassImgs1.push(PWarea2);
var SWarea2 = countArea(SWC2);
WaterClassImgs1.push(SWarea2);
var Landarea2 = countArea(Land2);
WaterClassImgs1.push(Landarea2);
var class_area1 = pie.ImageCollection().fromImages(WaterClassImgs1).reduceColumns(pie.Reducer.toList(), ['Area']);
print(class_area1);
//生成直方图
class_area1.getInfo(function(datas) {
var y1 = [];
var dataList = datas.list;
var y1 = dataList.Area;
y1 = y1.map(area area / 1000000);
var column_options = {
title: '年尺度水体类别面积',
legend: [selectStartYear, selectEndYear],
xAxis: ['PermanentWater', 'SensonalWater', 'Land'],
xAxisName: "类别 ",
yAxisName: "平方公里",
series: [
[y1[0], y1[1], y1[2]],
[y1[3], y1[4], y1[5]],
],
chartType: "column",
};
ChartArray(column_options);
});
//变化图层显示样式
var vischange = {
opacity: 1,
uniqueValue: '-3,-2,-1,0,1,2,3',
palette: '0000FF,9400D3,00BFFF,FFFFFF,808000,FF0000,FF8C00'
};
Map.addLayer(change.select('change'), vischange, "Change", true);
//图例
var data = {
title: "水体类别变化图例",
colors: ["#0000FF", "#9400D3", "#00BFFF", "#FFFFFF", "#808000", "#FF0000", "#FF8C00"],
labels: ["陆地→永久", "季节→永久", "陆地→季节", "不变", "季节→陆地", "永久→季节", "永久→陆地"],
step: 1
};
var style = {
right: "150px",
bottom: "10px",
height: "70px",
width: "500px"
};
var legend = ui.Legend(data, style);
Map.addUI(legend);
}
var label1 = ui.Label("基于PIE-engine的水体频率变化长时序遥感监测自动计算平台", { "font-size": "18px" });
var label2 = ui.Label("二、区域水体类别变化及检测(年尺度):", { "font-size": "17px" });
var label3 = ui.Label("请自定义用户感兴趣区,区域类型为矩形,输入坐标值:", { "font-size": "14px" });
var label4 = ui.Label("请输入开始年份和结束年份(2014—2020任选两年):", { "font-size": "14px" });
var label5 = ui.Label("请选择计算水体频率方法:", { "font-size": "14px" });
var label6 = ui.Label("注:虽然随机森林的提取最好,但是运算量大,计算时间长,可能会报错,请用户合理选择", { "font-size": "10px" });
var text1 = ui.Label("经度");
var text2 = ui.Label("纬度");
//选择研究区范围模块
var textBoxLB1 = ui.TextBox({
placeholder: "(经度,如114.338)",
value: selectLBp1,
onChange: function(value) {
selectLBp1 = value;
},
disabled: false
})
var textBoxLB2 = ui.TextBox({
placeholder: "(纬度,如30.517)",
value: selectLBp2,
onChange: function(value) {
selectLBp2 = value;
},
disabled: false
})
var selectLBName = ui.Label("左下角点坐标:", { "font-size": "14px" });
var selectRTName = ui.Label("右上角点坐标:", { "font-size": "14px" });
var textBoxRT1 = ui.TextBox({
placeholder: "(经度,如114.469)",
value: selectRTp1,
onChange: function(value) {
selectRTp1 = value;
},
disabled: false
})
var textBoxRT2 = ui.TextBox({
placeholder: "(纬度,如30.604)",
value: selectRTp2,
onChange: function(value) {
selectRTp2 = value;
},
disabled: false
})
var selectPanel1 = ui.Panel({
widgets: [text1, textBoxLB1, text2, textBoxLB2],
layout: ui.Layout.flow("horizontal")
});
var selectPanel3 = ui.Panel({
widgets: [text1, textBoxRT1, text2, textBoxRT2],
layout: ui.Layout.flow("horizontal")
});
//选择时间模块
var textBox2 = ui.TextBox({
placeholder: "请输入开始年份(如2016)",
value: selectStartYear,
onChange: function(value) {
selectStartYear = value;
},
disabled: false
})
var selectstartName = ui.Label("开始年份:", { "font-size": "14px" });
var selectStartPanel = ui.Panel({
widgets: [selectstartName, textBox2],
layout: ui.Layout.flow("horizontal")
});
var textBox3 = ui.TextBox({
placeholder: "请输入结束年份(如2020)",
value: selectEndYear,
onChange: function(value) {
selectEndYear = value;
},
disabled: false
})
var selectendName = ui.Label("结束年份:", { "font-size": "14px" });
var selectEndPanel = ui.Panel({
widgets: [selectendName, textBox3],
layout: ui.Layout.flow("horizontal")
});
//选择方法模块
var select1 = ui.Select({
items: ['AWEI', 'NDWI', "MNDWI", "随机森林"],
placeholder: "请选择",
value: selectway,
multiple: false,
onChange: function(value) {
selectway = value;
}
})
var selectName = ui.Label("选择方法:", { "font-size": "14px" });
var selectPanel2 = ui.Panel({
widgets: [selectName, select1],
layout: ui.Layout.flow("horizontal")
});
//按钮
var btn = ui.Button({
label: "开始",
type: "success",
onClick: clickBtn,
style: { left: "150px" }
});
//界面
var panel = ui.Panel({
widgets: [
label1, label2, label3,
selectLBName,
selectPanel1,
selectRTName,
selectPanel3,
label4,
selectStartPanel,
selectEndPanel,
label5,
selectPanel2,
label6,
btn
],
style: {
width: "350px",
backgroundColor: "#fff"
}
});
ui.root.add(panel);
这个程序暂时无法执行的原因?服务繁忙,请稍后再试。
往期推荐:
Google Earth Engine(GEE)——欧洲10米分辨率土地分类(21种分类)EUCROPMAP 2018数据
Nature(GEE_APP)全球潮汐可视化兼影像数据下载网站:Intertidal change
GEE:1992-2013年校正的夜间灯光数据集 (CCNL)
Google Earth Engine(GEE)——MODIS数据蒸散发数据北京市2001—2020年四季平均值案例分析
Google Earth Engine(GEE)——清华全球不透水层数据中国区域逐年下载
ALOS全球数字表面模型(DSM)30米重分类结果演示