服务管理与通信,基础原理分析

strikeeagle
发布于 2022-11-15 15:33
浏览
0收藏

涉及轻微的源码展示,可放心参考;

一、基础简介

服务注册发现是微服务架构中最基础的能力,下面将从源码层面分析实现逻辑和原理,在这之前要先来看下依赖工程的基础结构,涉及如下几个核心组件:

服务管理与通信,基础原理分析-鸿蒙开发者社区

  • commons:服务组件的抽象声明,本文只分析注册发现与负载均衡;
  • nacos:当下常用的注册中心组件,用来进行服务管理;
  • feign:服务间通信交互组件,在服务请求时涉及负载均衡的策略;
  • ribbon:在服务间通信请求时,提供多种负载均衡的策略实现;

在熟悉工程依赖之间的结构时,还要明白服务间交互的流程和原理,这样在分析源码设计时,有一个清晰的思路与轮廓;如何实现下面的服务交互模式,在阅读源码工程时,围绕如下两个核心逻辑:

服务管理与通信,基础原理分析-鸿蒙开发者社区

  • 注册发现:注册时如何上报服务的信息数据,这些数据以怎样的方式管理;
  • 负载均衡:当请求的服务同时存在多个时,以什么样的策略选择执行请求的服务;

在这里先简单的聊一下个人在阅读源码工程时的基本思路,比如微服务组件:通常从配置参数作为切入口,观察基于参数构建的核心对象,再重点分析对象的管理模式,以及适配的扩展能力,最后结合项目的应用场景即可:

服务管理与通信,基础原理分析-鸿蒙开发者社区

阅读源码最重要的是耐着心情慢慢看,并随手画下核心流程,实际上如果有一定的编程经验,不管是阅读什么工程的源码,只要用心去分析单点的实现原理,都算不上过度复杂,但是组件通常为了复用能力,会去适配多种复杂的场景,这样势必要采用抽象的封装和设计模式,源码工程的复杂度自然就会相应提高,这个话题后续会细聊。

二、服务注册

1、服务配置

首先从Nacos配置参数开始,这里只设置服务发现的两个参数:1Nacos注册中心的服务端地址,2在服务的元数据中加载分支号;然后来具体的看源码流程:

服务管理与通信,基础原理分析-鸿蒙开发者社区

在配置参数加载的过程中,有很多缺省的默认值,所以需要关注最终会提供的参数信息,来判断是否需要自定义设置,另外​​AutoConfig​​配置要重点看实例化的对象;断点的流程可以按照如下的方式做设置,这里陈列的是在配置加载阶段的几个核心节点:

  • 参数:NacosDiscoveryProperties#getNacosProperties
  • 配置:NacosServiceAutoConfiguration#nacosServiceManager
  • 构建:NacosServiceManager#buildNamingService

服务管理与通信,基础原理分析-鸿蒙开发者社区

NamingService是Nacos服务管理接口,涉及注册、查询、撤销、检查等多个方法,即对应的是Nacos服务端的相应API请求,在注册执行的阶段会细说用法。

2、注册构建

看完服务配置之后再看注册配置,对于配置中复杂的设计,需要重点关注两个信息:ConditionalOn和matchIfMissing,这样很容易发现默认加载:

  • 配置:NacosServiceRegistryAutoConfiguration#nacosServiceRegistry
  • 注册:NacosServiceRegistry#register
  • 实例:NacosServiceRegistry#getNacosInstanceFromRegistration

服务管理与通信,基础原理分析-鸿蒙开发者社区

在构建服务注册的核心类NacosServiceRegistry时,通过服务的登记信息转换为注册的实例化对象,然后通过NamingService接口方法,上报实例化对象;需要注意的是,虽然这里只看了Nacos中的相关API,但实际上API实现了诸多spring-cloud-commons包中声明的接口,比如Registration、ServiceInstance等。

3、执行上报

通常微服务的注册中心组件,都是基于​​server-client​​架构和部署方式,客户端需要根据自身启动状态去上报或者撤销注册,服务端负责统一维护注册数据:

  • 实现:NacosNamingService#registerInstance
  • 执行:NamingProxy#registerService
  • 接口:InstanceController#register

服务管理与通信,基础原理分析-鸿蒙开发者社区

在最终执行服务注册时,其动作本质就是请求Nacos服务端的一个Post方法,并将配置数据上报,例如:IP地址、端口、元数据、权重等;这样客户端注册逻辑执行完成,然后再看服务端数据可视化界面,就可以看到注册的客户端服务。

服务管理与通信,基础原理分析-鸿蒙开发者社区

至于Nacos服务端是如何管理这些注册数据的,参考部署版本的​​nacos-naming​​模块源码,阅读上报接口和页面中的列表加载的实现即可;注意在初始的配置文件中,加入的branch分支参数也在元数据结构中。

在NamingService接口中,涉及多个服务管理的方法,在执行原理上基本相同就不再赘述,这样注册中心的Client端和Server端就形成了通信机制,接下来再看Client端之间的通信。

三、服务通信

1、基础配置

Feign在配置方面比较复杂,提供了多个场景下的适配能力,这里只以两个常见的参数作为切入点:1通信超时时间,2Http选型(采用默认值);

服务管理与通信,基础原理分析-鸿蒙开发者社区

  • 参数:FeignClientProperties#getConfig
  • 注解:FeignClientsRegistrar#registerFeignClients
  • 配置:FeignAutoConfiguration#feignContext
  • 构建:FeignClientFactoryBean#getTarget

服务管理与通信,基础原理分析-鸿蒙开发者社区

这里要重点关注的是注解的扫描和注册以及容器管理,要理解Feign的上下文环境需要明白上文中描述的服务间交互原理,然后参考FeignClientFactoryBean工厂类中构建逻辑。

2、通信逻辑

虽然Feign注解的方式可以简化开发,但是在具体执行的时候还是Http的请求响应模式,这里可以参考LoadBalancerFeignClient类中的execute方法:

  • 配置:FeignRibbonClientAutoConfiguration
  • 通信构建:LoadBalancerFeignClient#execute
  • 负载均衡:AbstractLoadBalancerAwareClient#executeWithLoadBalancer

服务管理与通信,基础原理分析-鸿蒙开发者社区

不管是Feign组件还是Spring框架,默认的负载均衡策略都是采用Ribbon的实现方式,在上述流程中配置和负载均衡命令都依赖Ribbon组件,接下来看服务选择策略。

四、负载均衡

1、命令构建

这里构建了调用负载均衡接口的命令,ILoadBalancer接口中提供服务管理的相关方法,其中最核心的就是chooseServer方法,然后结合具体的策略规则实现服务的选择的功能:

  • 命令构建:LoadBalancerCommand.Builder#build
  • 负载容器:LoadBalancerContext#getServerFromLoadBalancer
  • 选择接口:ILoadBalancer#chooseServer

服务管理与通信,基础原理分析-鸿蒙开发者社区

2、策略规则

Ribbon组件中负载均衡的策略有好几种规则,比如随机选择、Key匹配、权重倾斜等;在工作中常用的就是默认规则即RoundRobinRule,以及基于Key设计的灰度模式,简单做法就是服务启动时在元数据中添加的分支号作为匹配的标识;

  • 规则设置:BaseLoadBalancer#setRule
  • 随机策略:RoundRobinRule#choose
  • 过滤策略:PredicateBasedRule#choose

服务管理与通信,基础原理分析-鸿蒙开发者社区

现在回到流程的开始看,通过Nacos组件进行服务注册和管理,通过Feign组件基于Ribbon负载均衡策略做服务通信,如果单看各节点组件的逻辑还比较容易理解,但是通过Spring框架做组件之间的协作调度时,复杂程度明显提高;

如果是刚开始阅读源码的阶段,可以只关注相应流程的核心逻辑,选择性忽略细节的实现原理,当然重点还是要多读读Spring的设计,这样时间久了自然会有很多收获。

五、参考源码

编程文档:
https://gitee.com/cicadasmile/butte-java-note

应用仓库:
https://gitee.com/cicadasmile/butte-flyer-parent


本文转载自公众号:知了一笑

分类
标签
已于2022-11-15 15:33:59修改
收藏
回复
举报
回复
    相关推荐