OpenHarmony:如何使用HDF平台驱动控制I2C 原创 精华
1、程序介绍
本程序是基于OpenHarmony标准系统编写的平台驱动案例:I2C
目前已在凌蒙派-RK3568开发板跑通。详细资料请参考官网:https://gitee.com/Lockzhiner-Electronics/lockzhiner-rk3568-openharmony/tree/master/samples/b06_platform_device_i2c
详细资料请参考官网:
2、基础知识
2.1、I2C简介
I2C(Inter Integrated Circuit)总线是由Philips公司开发的一种简单、双向二线制同步串行总线。由于其硬件连接简单、成本低廉,因此被广泛应用于各种短距离通信的场景。
I2C以主从方式工作,通常有一个主设备和一个或者多个从设备,主从设备通过SDA(SerialData)串行数据线以及SCL(SerialClock)串行时钟线两根线相连(如图1)。
I2C数据的传输必须以一个起始信号作为开始条件,以一个结束信号作为传输的停止条件。数据传输以字节为单位,高位在前,逐个bit进行传输。
I2C总线上的每一个设备都可以作为主设备或者从设备,而且每一个设备都会对应一个唯一的地址,当主设备需要和某一个从设备通信时,通过广播的方式,将从设备地址写到总线上,如果某个从设备符合此地址,将会发出应答信号,建立传输。
I2C接口定义了完成I2C传输的通用方法集合,包括:
-
I2C控制器管理:打开或关闭I2C控制器
-
I2C消息传输:通过消息传输结构体数组进行自定义传输
I2C物理连线示意图
2.2、I2C驱动开发
2.2.1、I2C驱动开发接口
为了保证上层在调用I2C接口时能够正确的操作硬件,核心层在//drivers/hdf_core/framework/support/platform/include/i2c/i2c_core.h中定义了以下钩子函数。驱动适配者需要在适配层实现这些函数的具体功能,并与这些钩子函数挂接,从而完成接口层与核心层的交互。
I2cMethod和I2cLockMethod定义:
在适配层中,I2cMethod必须被实现,I2cLockMethod可根据实际情况考虑是否实现。核心层提供了默认的I2cLockMethod,其中使用mutex作为保护临界区的锁:
若实际情况不允许使用mutex(例如使用者可能在中断上下文调用I2C接口,mutex可能导致休眠,而中断上下文不允许休眠)时,驱动适配者可以考虑使用其他类型的锁来实现一个自定义的I2cLockMethod。一旦实现了自定义的I2cLockMethod,默认的I2cLockMethod将被覆盖。
I2cMethod结构体成员函数功能说明:
函数成员 | 入参 | 出参 | 返回值 | 功能 |
---|---|---|---|---|
transfer | cntlr:结构体指针,核心层I2C控制器。 msgs:结构体指针,用户消息。 count:uint16_t,消息数量。 | 无 | HDF_STATUS相关状态 | 传递用户消息 |
I2cLockMethod结构体成员函数功能说明:
函数成员 | 入参 | 出参 | 返回值 | 功能 |
---|---|---|---|---|
lock | cntlr:结构体指针,核心层I2C控制器。 | 无 | HDF_STATUS相关状态 | 获取临界区锁 |
unlock | cntlr:结构体指针,核心层I2C控制器。 | 无 | HDF_STATUS相关状态 | 释放临界区锁 |
2.2.2、I2C驱动开发步骤
I2C模块适配HDF框架包含以下四个步骤:
- 实例化驱动入口。
- 配置属性文件。
- 实例化I2C控制器对象。
- 驱动调试。
我们以///drivers/hdf_core/adapter/khdf/linux/platform/i2c/i2c_adapter.c为例(该I2C驱动是建立于Linux I2C子系统基础上创建)。
2.2.2.1、驱动实例化驱动入口
I2C控制器会出现很多个设备挂接的情况,因而在HDF框架中首先会为此类型的设备创建一个管理器对象,并同时对外发布一个管理器服务来统一处理外部访问。这样,用户需要打开某个设备时,会先获取到管理器服务,然后管理器服务根据用户指定参数查找到指定设备。
I2C管理器服务的驱动由核心层实现,驱动适配者不需要关注这部分内容的实现,但在实现Init函数的时候需要调用核心层的I2cCntlrAdd函数,它会实现相应功能。
I2C驱动入口开发参考:
2.2.2.2、配置属性文件
deviceNode信息与驱动入口注册相关,器件属性值对于驱动适配者的驱动实现以及核心层I2cCntlr相关成员的默认值或限制范围有密切关系。
统一服务模式的特点是device_info.hcs文件中第一个设备节点必须为I2C管理器,其各项参数如下所示:
成员名 | 值 |
---|---|
moduleName | 固定为HDF_PLATFORM_I2C_MANAGER |
serviceName | 固定为HDF_PLATFORM_I2C_MANAGER |
policy | 具体配置为1或2取决于是否对用户态可见 |
deviceMatchAttr | 没有使用,可忽略 |
从第二个节点开始配置具体I2C控制器信息,此节点并不表示某一路I2C控制器,而是代表一个资源性质设备,用于描述一类I2C控制器的信息。多个控制器之间相互区分的参数是busId和reg_pbase,这在i2c_config.hcs文件中有所体现。
本次案例以rk3568为案例(即文件//vendor/lockzhiner/rk3568/hdf_config/khdf/device_info/device_info.hcs),添加deviceNode描述,具体修改如下:
i2c_config.hcs 配置参考//vendor/lockzhiner/rk3568/hdf_config/khdf/platform/i2c_config.hcs,具体修改如下:
2.2.2.3、实例化I2C控制器对象
完成驱动入口注册之后,下一步就是以核心层I2cCntlr对象的初始化为核心,包括驱动适配者自定义结构体(传递参数和数据),实例化I2cCntlr成员I2cMethod(让用户可以通过接口来调用驱动底层函数),实现HdfDriverEntry成员函数(Bind,Init,Release)。
2.2.2.4、驱动调试
建议先在Linux下修改确认,再移植到OpenHarmony。
2.3、I2C应用开发
2.3.1、接口说明
I2C模块提供的主要接口如表1所示,具体API详见//drivers/hdf_core/framework/include/platform/i2c_if.h。
I2C驱动API接口功能介绍如下所示:
接口名 | 接口描述 |
---|---|
DevHandle I2cOpen(int16_t number) | 打开I2C控制器 |
void I2cClose(DevHandle handle) | 关闭I2C控制器 |
int32_t I2cTransfer(DevHandle handle, struct I2cMsg *msgs, int16_t count) | 自定义传输 |
(1)I2cOpen
在进行I2C通信前,首先要调用I2cOpen打开I2C控制器。
I2cOpen参数定义如下:
参数 | 参数描述 |
---|---|
number | I2C控制器号 |
I2cOpen返回值定义如下:
返回值 | 返回值描述 |
---|---|
NULL | 打开I2C控制器失败 |
设备句柄 | 打开的I2C控制器设备句柄 |
假设系统中存在8个I2C控制器,编号从0到7,以下代码示例为获取3号控制器:
(2)I2cClose
I2C通信完成之后,需要关闭I2C控制器。
I2cClose参数定义如下:
参数 | 参数描述 |
---|---|
handle | I2C控制器设备句柄 |
(3)I2cTransfer
i2c消息传输。
I2cTransfer参数定义如下:
参数 | 参数描述 |
---|---|
handle | I2C控制器设备句柄 |
msgs | 待传输数据的消息结构体数组 |
count | 消息数组长度 |
I2cTransfer返回值定义如下:
返回值 | 返回值描述 |
---|---|
正整数 | 成功传输的消息结构体数目 |
负数 | 执行失败 |
I2C传输消息类型为I2cMsg,每个传输消息结构体表示一次读或写,通过一个消息数组,可以执行若干次的读写组合操作。组合读写示例:
2.2.2、开发流程
使用I2C设备的一般流程如下图所示:
3、程序解析
3.1、准备工作
查看《凌蒙派-RK3568开发板_排针说明表_》(即Git仓库的//docs/board/凌蒙派-RK3568开发板_排针说明表_v1.0.xlsx),具体如下:
排针名称 | GPIO引脚 | 复用功能 |
---|---|---|
0_B5 | GPIO0_B5 | I2C2_SCL_M0 |
0_B6 | GPIO0_B6 | I2C2_SDA_M0 |
3.2、Linux内核解析
3.2.1、创建Linux内核Git
请参考《OpenHarmony如何为内核打patch》(即Git仓库的//docs/OpenHarmony如何为内核打patch.docx)。
3.2.2、修改设备树I2C2配置
修改//arch/arm64/boot/dts/rockchip/rk3568-lockzhiner.dtsi(即该目录是指已打Patch后的Linux内核,不是OpenHarmony主目录),定义i2c2启用,具体如下所示:
3.2.3、创建内核patch
请参考《OpenHarmony如何为内核打patch》(即Git仓库的//docs/OpenHarmony如何为内核打patch.docx)。
3.2.4、替换OpenHarmony的内核patch
将制作出的kernel.patch替换到//kernel/linux/patches/linux-5.10/rk3568_patch/kernel.patch即可。
3.3、OpenHarmony配置树配置
3.3.1、device_info.hcs
//vendor/lockzhiner/rk3568/hdf_config/khdf/device_info/device_info.hcs已定义好,具体如下:
注意:
- device1是rk3568原有的配置,也是我们需要的,作为OpenHarmony的i2c配置。
- moduleName定义为linux_i2c_adapter,表示该节点对应于//drivers/hdf_core/adapter/khdf/linux/platform/i2c/i2c_adapter.c,该驱动是对接Linux i2c子系统。
3.3.2、i2c_config.hcs
在//vendor/lockzhiner/rk3568/hdf_config/khdf/platform/i2c_config.hcs,具体内容如下:
注意:
- controller_0x120b2000是为i2c2准备的。
- bus用于定于Linux i2c控制器序号。
3.4、OpenHarmony I2C平台驱动
在//drivers/hdf_core/adapter/khdf/linux/platform/i2c/i2c_adapter.c已编写对接Linux I2C驱动的相关代码,具体内容如下:
该部分代码不细述,感兴趣的读者可以去详读。
3.5、应用程序
3.5.1、i2c_test.c
i2c相关头文件如下所示:
主函数负责i2c读写操作。
其中,读操作源代码具体如下:
写操作源代码如下所示:
3.5.2、BUILD.gn
编写应用程序的BUILD.gn,具体内容如下:
3.5.3、参与应用程序编译
编辑//vendor/lockzhiner/rk3568/samples/BUILD.gn,开启编译选项。具体如下:
4、程序编译
建议使用docker编译方法,运行如下:
5、运行结果
运行如下:
上述命令为:查看i2c2控制器,从设备地址115(即0x73,该地址为个人外接i2c芯片),读取寄存器地址0,数据长度为1。
在调试过程中,OpenHarmony还提供Linux i2c-tools工具。
(1)查看i2c控制器
(2)查看i2c2控制器所有从设备地址
(3)读取i2c2控制器的从设备地址0x73的所有寄存器数据
对照着Git好好学习一下
学下底层知识
很不错的传输方式
I2C确实好用
讲解的很详细