
回复
哈喽!我是小L,那个在鸿蒙安防领域「用1MB模型实现周界防范」的女程序员~ 你知道吗?通过模型轻量化+边缘计算,我们能让传统摄像头秒变「智能卫士」,误报率从30%降到5%,功耗降低40%!今天就来拆解如何用HarmonyOS Next打造「看得准、响应快、吃得少」的安防系统,让每个摄像头都成为「永不疲倦的保安」!
# YOLOv5s→YOLOv5n改造(参数量从7MB→1.9MB)
def prune_yolov5n(model):
# 删除SPP层(安防场景对多尺度需求较低)
del model.layers[6]
# 减半C3模块数量
model.layers[3] = C3(in_channels=64, out_channels=64, n=1)
model.layers[5] = C3(in_channels=128, out_channels=128, n=1)
return model
// FP32→INT8+FP16混合量化(精度损失<3%)
TensorQuantizer quantizer;
quantizer.AddQuantLayer("conv1", QuantType::INT8); // 输入层用INT8
quantizer.AddQuantLayer("conv_last", QuantType::FP16); // 输出层用FP16
quantizer.Process(model);
# 教师模型:YOLOv5m,学生模型:YOLOv5n
def distill_yolov5n(teacher, student):
loss_fn = KnowledgeDistillationLoss(teacher, temperature=10)
optimizer = SGD(student.parameters(), lr=0.001)
for epoch in range(50):
for images, targets in dataloader:
student_logits = student(images)
teacher_logits = teacher(images, training=False)
loss = loss_fn(student_logits, teacher_logits, targets)
loss.backward()
optimizer.step()
return student
def __init__(self, in_channels, out_channels):
super().__init__()
self.spatial_conv = nn.Conv2d(in_channels, out_channels, kernel_size=3)
self.temporal_pool = nn.AvgPool1d(kernel_size=3, stride=1)
def forward(self, x): # x shape: (B, T, C, H, W)
#### 2. 双流网络裁剪:
- 仅保留RGB流,去除光流分支(安防场景动态特征较明显)
- - 模型体积减少40%,推理速度提升30%
## 二、端侧部署的「安防特化」优化
### (一)动态推理调度策略
```mermaid
graph LR
A[摄像头数据流] --> B[动态分辨率调节]
B --> C{目标距离>5米?}
C -->|是| D[1024x576分辨率+轻量模型]
C -->|否| E[1920x1080分辨率+增强模型]
D --> F[常规检测]
E --> G[细节识别]
// 基于距离传感器的分辨率切换
DistanceSensor distanceSensor = new DistanceSensor();
int distance = distanceSensor.getDistance();
if (distance > 500) { // 5米外
camera.setResolution(1024, 576);
model.load("yolov5n_light.om");
} else { // 5米内
camera.setResolution(1920, 1080);
model.load("yolov5n_enhanced.om");
}
Frame low_res_frame = camera.captureLowRes();
bool has_motion = mobilenet.predict(low_res_frame);
if (has_motion) {
#### 2. 传感器融合唤醒:
- 组合PIR传感器+视觉检测,减少误报
- ```java
- PirSensor pirSensor = new PirSensor();
- if (pirSensor.isMotionDetected() && model.predict(frame).hasHuman()) {
- triggerAlarm(); // 双重确认后报警
- }
- ```
## 三、实战案例:「智慧园区周界防范」系统
### (一)硬件配置
| 设备 | 型号 | 算力 | 内存 | 模型体积 |
|--------------|--------------------|---------|--------|----------|
| 智能摄像头 | 华为好望2120 | 1TOPS | 2GB | 2.1MB |
| 边缘网关 | 华为Atlas 500 | 8TOPS | 8GB | 5.6MB |
| 手持终端 | 华为P60 Pro | 20TOPS | 12GB | 8.9MB |
### (二)轻量化实施步骤
#### 1. 模型压缩对比
| 阶段 | 目标检测模型 | 参数量 | FLOPs | 检测精度(mAP) | 推理时间(ms@1080p)|
|--------------|--------------------|----------|---------|---------------|-------------------|
| 原始模型 | YOLOv5s | 7.0M | 16.5B | 85.2% | 120 |
| 剪枝+量化 | YOLOv5n-light | 1.9M | 4.2B | 82.1% | 35 |
| 蒸馏+优化 | YOLOv5n-enhanced | 2.1M | 4.5B | 84.5% | 40 |
#### 2. 多设备协同推理
```python
# 摄像头端:轻量模型初筛
results = yolov5n_light.predict(frame)
if results.hasSuspiciousTarget():
# 边缘网关:增强模型复检
enhanced_results = yolov5n_enhanced.predict(high_res_frame)
if enhanced_results.confidence > 0.9:
# 手持终端:推送警报+实时画面
sendAlertToMobile(enhanced_results, frame)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8,8))
enhanced = clahe.apply(gray)
return np.stack([enhanced]*3, axis=-1)
A[含雾图像] --> B[浅层特征提取]
A --> C[深层特征提取]
B --> D[雾浓度估计]
C --> E[清晰图像预测]
D --> E[雾效补偿]
def __init__(self):
super().__init__()
self.conv_p2 = nn.Conv2d(64, 32, kernel_size=3, stride=1)
self.fuse = nn.Conv2d(96, 32, kernel_size=1)
def forward(self, p3, p4, p5):
#### 2. 注意力机制增强:
- 在颈部网络加入CBAM注意力模块
- - 提升小目标区域的特征响应
- ```python
- class CBAM(nn.Module):
- def __init__(self, channels):
- super().__init__()
- self.channel_attn = nn.Sequential(
- nn.AdaptiveAvgPool2d(1),
- nn.Conv2d(channels, channels//16, 1),
- nn.ReLU(),
- nn.Conv2d(channels//16, channels, 1),
- nn.Sigmoid()
- )
- self.spatial_attn = nn.Conv2d(2, 1, kernel_size=7, padding=3)
def forward(self, x):
ca = self.channel_attn(x) * x
sa = self.spatial_attn(torch.cat([ca.mean(1, keepdim=True), ca.max(1, keepdim=True)], dim=1)) * ca
return sa
graph LR
A[实时推理] --> B[异常结果标记]
B --> C[自动收集难样本]
C --> D[边缘端小批量训练]
D --> E[模型参数更新]
# 难样本自动收集
def collect_hard_samples(results, frame):
for obj in results.objects:
if obj.confidence < 0.5:
save_sample(frame, obj.bbox, label=obj.class_id)
if len(hard_samples) > 100:
train_edge_model(hard_samples)
update_main_model()
// 摄像头故障预测模型
FaultPredictor predictor = new FaultPredictor();
predictor.load("camera_fault_model.om");
CameraStatus status = camera.getStatus();
float[] features = {status.heat, status.fps, status.errorCount};
float probability = predictor.predict(features);
if (probability > 0.8) {
sendMaintenanceAlert(); // 提前预警摄像头故障
}
```json
"input_resolutions": [
"1920x1080",
"1280x720",
"640x480"
]
```
```java
List<Rect> sensitiveZones = getSensitiveZones();
for (Rect zone : sensitiveZones) {
model.setPrecision(zone, Precision.FP16);
}
```
```json
"annotations": [
{
"frame_id": 123,
"bbox": [100, 200, 50, 50],
"track_id": 456,
"class": "human"
}
]
```
系统有效性 = (检测精度 × 响应速度)÷ 误报率