
实时语音转文字备忘录系统设计与实现 原创
实时语音转文字备忘录系统设计与实现
一、项目概述
基于鸿蒙分布式技术的实时语音转文字备忘录系统,能够将用户的语音输入实时转换为文字并同步到多个设备(手机、平板、智慧屏等)。系统利用鸿蒙的分布式能力实现多设备协同录音、语音识别和内容同步,为用户提供无缝的跨设备语音备忘录体验。
二、核心技术点
分布式语音采集与处理
// 分布式语音采集管理器
public class DistributedVoiceRecorder {
private static final String VOICE_DATA_KEY = “voice_data”;
private DistributedDataManager dataManager;
private List<AudioCapturer> capturers = new ArrayList<>();
public DistributedVoiceRecorder(Context context) {
dataManager = DistributedDataManagerFactory.getInstance()
.createDistributedDataManager(new ManagerConfig(context));
// 初始化多设备录音网络
public void initRecordingNetwork(List<DeviceInfo> devices) {
for (DeviceInfo device : devices) {
AudioCapturer capturer = createCapturerForDevice(device);
capturers.add(capturer);
capturer.setDataCallback(audioData -> {
processAudioData(audioData, device);
});
}
// 处理音频数据
private void processAudioData(byte[] audioData, DeviceInfo sourceDevice) {
// 1. 音频预处理(降噪、增益等)
byte[] processed = AudioProcessor.process(audioData);
// 2. 分布式数据聚合
VoiceDataPacket packet = new VoiceDataPacket(
sourceDevice.getDeviceId(),
System.currentTimeMillis(),
processed
);
String json = new Gson().toJson(packet);
dataManager.putString(VOICE_DATA_KEY + "_" + sourceDevice.getDeviceId(), json);
// 3. 触发语音识别
if (shouldTriggerRecognition()) {
triggerDistributedRecognition();
}
// 触发分布式语音识别
private void triggerDistributedRecognition() {
Map<String, VoiceDataPacket> allPackets = new HashMap<>();
List<String> keys = dataManager.getKeysWithPrefix(VOICE_DATA_KEY);
for (String key : keys) {
String json = dataManager.getString(key);
VoiceDataPacket packet = new Gson().fromJson(json, VoiceDataPacket.class);
allPackets.put(packet.deviceId, packet);
// 执行多设备语音融合识别
String recognizedText = VoiceRecognizer.recognize(allPackets.values());
distributeRecognitionResult(recognizedText);
}
实时语音识别引擎
// 实时语音识别服务
public class RealTimeVoiceRecognizer {
private static final int SAMPLE_RATE = 16000;
private static final int BUFFER_SIZE_MS = 100; // 100ms缓冲区
private SpeechRecognizer recognizer;
private CircularAudioBuffer buffer;
public RealTimeVoiceRecognizer(Context context) {
// 初始化语音识别器
recognizer = SpeechRecognizer.createSpeechRecognizer(context);
// 设置识别监听器
recognizer.setRecognitionListener(new RecognitionListener() {
@Override
public void onResults(Bundle results) {
List<String> matches = results.getStringArrayList(
SpeechRecognizer.RESULTS_RECOGNITION);
if (matches != null && !matches.isEmpty()) {
String bestMatch = matches.get(0);
onTextRecognized(bestMatch);
}
// 其他回调方法...
});
// 初始化环形缓冲区
buffer = new CircularAudioBuffer(SAMPLE_RATE * BUFFER_SIZE_MS / 1000);
// 处理音频数据流
public void processAudioStream(byte[] audioData) {
buffer.write(audioData);
// 当缓冲区足够时触发识别
if (buffer.available() >= BUFFER_SIZE_MS * SAMPLE_RATE / 1000) {
byte[] chunk = buffer.read();
recognizeAudioChunk(chunk);
}
private void recognizeAudioChunk(byte[] audioChunk) {
// 将音频数据转换为识别器需要的格式
ByteArrayInputStream stream = new ByteArrayInputStream(audioChunk);
AudioFormat format = new AudioFormat.Builder()
.setEncoding(AudioFormat.ENCODING_PCM_16BIT)
.setSampleRate(SAMPLE_RATE)
.setChannelMask(AudioFormat.CHANNEL_IN_MONO)
.build();
AudioRecord audioRecord = new AudioRecord.Builder()
.setAudioFormat(format)
.build();
// 开始识别
recognizer.startListening(new Intent(RecognizerIntent.ACTION_RECOGNIZE_SPEECH)
.putExtra(RecognizerIntent.EXTRA_LANGUAGE_MODEL,
RecognizerIntent.LANGUAGE_MODEL_FREE_FORM)
.putExtra(RecognizerIntent.EXTRA_PARTIAL_RESULTS, true));
// 分布式识别结果处理
private void onTextRecognized(String text) {
// 发送到所有设备
MemoSyncService.syncTextUpdate(text);
}
三、鸿蒙跨端同步实现
备忘录同步服务
// 备忘录数据同步服务
public class MemoSyncService extends Ability {
private static final String MEMO_DATA_KEY = “memo_data”;
private DistributedDataManager dataManager;
@Override
public void onStart(Intent intent) {
super.onStart(intent);
initSyncService();
private void initSyncService() {
dataManager = DistributedDataManagerFactory.getInstance()
.createDistributedDataManager(new ManagerConfig(this));
// 注册数据变更监听
dataManager.registerDataChangeListener(new DataChangeListener() {
@Override
public void onDataChanged(String deviceId, String key, String value) {
if (MEMO_DATA_KEY.equals(key)) {
processMemoUpdate(value);
}
});
// 同步文本更新
public static void syncTextUpdate(String text) {
MemoUpdate update = new MemoUpdate(
DeviceManager.getLocalDeviceId(),
System.currentTimeMillis(),
text
);
String json = new Gson().toJson(update);
DistributedDataManager.getInstance().putString(MEMO_DATA_KEY, json);
// 处理备忘录更新
private void processMemoUpdate(String jsonData) {
MemoUpdate update = new Gson().fromJson(jsonData, MemoUpdate.class);
// 忽略本设备发出的更新
if (!update.deviceId.equals(DeviceManager.getLocalDeviceId())) {
EventBus.getDefault().post(new MemoUpdateEvent(update));
}
// 获取完整备忘录内容
public String getCombinedMemo() {
List<MemoUpdate> allUpdates = getAllUpdates();
Collections.sort(allUpdates, (u1, u2) -> Long.compare(u1.timestamp, u2.timestamp));
StringBuilder combined = new StringBuilder();
for (MemoUpdate update : allUpdates) {
combined.append(update.text).append(" ");
return combined.toString();
private List<MemoUpdate> getAllUpdates() {
List<String> allData = dataManager.getAllValues(MEMO_DATA_KEY);
List<MemoUpdate> updates = new ArrayList<>();
for (String json : allData) {
updates.add(new Gson().fromJson(json, MemoUpdate.class));
return updates;
}
多设备备忘录UI
// 分布式备忘录UI组件
public class VoiceMemoComponent extends ComponentContainer {
private Text memoDisplay;
private Button recordButton;
private RealTimeVoiceRecognizer recognizer;
private DistributedVoiceRecorder recorder;
public VoiceMemoComponent(Context context) {
super(context);
initUI();
initSpeechComponents();
registerEventHandlers();
private void initUI() {
// 初始化UI组件
memoDisplay = new Text(getContext());
memoDisplay.setTextSize(16);
recordButton = new Button(getContext());
recordButton.setText("按住说话");
// 设置布局
setOrientation(Component.VERTICAL);
addComponent(memoDisplay);
addComponent(recordButton);
private void initSpeechComponents() {
recognizer = new RealTimeVoiceRecognizer(getContext());
recorder = new DistributedVoiceRecorder(getContext());
private void registerEventHandlers() {
// 录音按钮事件
recordButton.setTouchEventListener(new Component.TouchEventListener() {
@Override
public void onTouchEvent(Component component, TouchEvent event) {
if (event.getAction() == TouchEvent.PRESS) {
startRecording();
else if (event.getAction() == TouchEvent.RELEASE) {
stopRecording();
return true;
});
// 备忘录更新事件
EventBus.getDefault().addSubscriber(this, MemoUpdateEvent.class, event -> {
updateMemoDisplay(event.getUpdate());
});
private void startRecording() {
// 1. 初始化录音设备网络
List<DeviceInfo> devices = DeviceManager.getPairedDevices();
recorder.initRecordingNetwork(devices);
// 2. 开始录音
recorder.startRecording();
// 3. 更新UI状态
recordButton.setText("录音中...");
private void stopRecording() {
// 1. 停止录音
recorder.stopRecording();
// 2. 更新UI状态
recordButton.setText("按住说话");
// 3. 显示完整备忘录
String fullMemo = MemoSyncService.getCombinedMemo();
memoDisplay.setText(fullMemo);
private void updateMemoDisplay(MemoUpdate update) {
// 在UI线程更新显示
getContext().getUITaskDispatcher().asyncDispatch(() -> {
String currentText = memoDisplay.getText();
memoDisplay.setText(currentText + " " + update.text);
});
// 开始分布式语音备忘录会话
public void startDistributedSession(List<DeviceInfo> devices) {
// 1. 初始化分布式组件
recorder.initRecordingNetwork(devices);
// 2. 设置音频处理回调
recorder.setProcessedAudioCallback(audioData -> {
recognizer.processAudioStream(audioData);
});
}
四、系统架构设计
±------------------+ ±------------------+ ±------------------+
手机: 主录音设备 <—> 平板: 实时显示 <—> 智慧屏: 大屏展示
±------------------+ ±------------------+ ±------------------+
v v
±--------------------------------------------------------------+
鸿蒙分布式语音处理中间层
±--------------------------------------------------------------+
v v
±------------------+ ±------------------+ ±------------------+
语音采集处理 实时语音识别 文本同步存储
±------------------+ ±------------------+ ±------------------+
五、关键技术创新点
多设备协同降噪:利用多麦克风阵列提升语音质量
实时流式识别:低延迟语音转文字技术
智能断句合并:自然语言处理优化备忘录可读性
分布式文本同步:多设备间实时内容同步
六、应用场景
会议记录:多人会议实时转录为文字纪要
课堂笔记:讲课内容自动转换为文字笔记
灵感捕捉:随时语音记录创意想法
无障碍辅助:为听障人士提供语音转文字服务
七、性能优化方案
// 自适应语音处理策略
public class AdaptiveVoiceProcessor {
private static final int MODE_HIGH_QUALITY = 0;
private static final int MODE_BALANCED = 1;
private static final int MODE_LOW_LATENCY = 2;
private int currentMode = MODE_BALANCED;
private NetworkQualityMonitor networkMonitor;
private DevicePerformanceMonitor perfMonitor;
public AdaptiveVoiceProcessor(Context context) {
networkMonitor = new NetworkQualityMonitor(context);
perfMonitor = new DevicePerformanceMonitor(context);
// 根据环境条件调整处理策略
public void adjustProcessingStrategy() {
// 评估网络条件
int networkScore = networkMonitor.getQualityScore();
// 评估设备性能
int perfScore = perfMonitor.getPerformanceScore();
if (networkScore > 80 && perfScore > 80) {
currentMode = MODE_HIGH_QUALITY;
else if (networkScore < 30 || perfScore < 30) {
currentMode = MODE_LOW_LATENCY;
else {
currentMode = MODE_BALANCED;
applyCurrentMode();
private void applyCurrentMode() {
switch (currentMode) {
case MODE_HIGH_QUALITY:
// 启用高质量模式设置
AudioProcessor.setSampleRate(44100);
AudioProcessor.setNoiseReductionLevel(0.9f);
VoiceRecognizer.setPrecisionMode(true);
break;
case MODE_BALANCED:
// 启用平衡模式设置
AudioProcessor.setSampleRate(16000);
AudioProcessor.setNoiseReductionLevel(0.7f);
VoiceRecognizer.setPrecisionMode(false);
break;
case MODE_LOW_LATENCY:
// 启用低延迟模式设置
AudioProcessor.setSampleRate(8000);
AudioProcessor.setNoiseReductionLevel(0.5f);
VoiceRecognizer.setLowLatencyMode(true);
break;
}
// 分布式策略同步
public void syncStrategyAcrossDevices() {
List<DeviceInfo> devices = DeviceManager.getPairedDevices();
for (DeviceInfo device : devices) {
if (!device.getDeviceId().equals(DeviceManager.getLocalDeviceId())) {
sendStrategyToDevice(device, currentMode);
}
}
// 智能语音数据缓存
public class VoiceDataCache {
private static final long MAX_CACHE_SIZE = 50 1024 1024; // 50MB
private LruCache<String, CachedAudio> memoryCache;
private Map<String, Long> accessTimes = new HashMap<>();
public VoiceDataCache() {
memoryCache = new LruCache<String, CachedAudio>((int) (MAX_CACHE_SIZE / 1024)) {
@Override
protected int sizeOf(String key, CachedAudio audio) {
return audio.sizeInKB();
};
// 缓存音频数据
public void cacheAudio(String sessionId, byte[] audioData) {
CachedAudio cached = new CachedAudio(audioData, System.currentTimeMillis());
memoryCache.put(sessionId, cached);
accessTimes.put(sessionId, System.currentTimeMillis());
// 获取缓存的音频
public byte[] getCachedAudio(String sessionId) {
CachedAudio cached = memoryCache.get(sessionId);
if (cached != null) {
accessTimes.put(sessionId, System.currentTimeMillis());
return cached.getData();
return null;
// 定期清理旧缓存
public void cleanUpOldCache() {
long now = System.currentTimeMillis();
long threshold = now - (24 60 60 * 1000); // 24小时前
for (Map.Entry<String, Long> entry : accessTimes.entrySet()) {
if (entry.getValue() < threshold) {
memoryCache.remove(entry.getKey());
accessTimes.remove(entry.getKey());
}
// 分布式缓存同步
public void syncCacheWithDevice(DeviceInfo device) {
// 实现缓存同步逻辑
}
八、总结
本实时语音转文字备忘录系统基于鸿蒙分布式技术,实现了以下创新价值:
多设备协同:利用设备集群提升语音识别准确率
实时体验:语音到文字的极低延迟转换
无缝同步:跨设备内容实时保持一致
场景智能适配:根据使用环境自动优化处理策略
该系统充分展现了鸿蒙分布式能力在语音交互场景中的应用潜力,未来可结合更多AI技术实现说话人分离、语音指令识别、自动摘要等增强功能,并通过鸿蒙原子化服务实现更灵活的语音备忘录使用方式。
