Elasticsearch 常见的 8 种错误及最佳实践
Elasticsearch 社区有大量关于 Elasticsearch 错误和异常的问题。
深挖这些错误背后的原因,把常见的错误积累为自己的实战经验甚至是工具,不仅可以节省我们的开发和运维时间,而且可以帮助确保 Elasticsearch 集群的长期健康运行。
常见的异常、原因和常规最佳实践拆解如下,这些最佳实践可以帮助我们更有效地识别、最小化定位和处理异常问题。
Elasticsearch 依靠映射(Mapping)定义的数据类型处理数据。
映射定义了文档中的字段并指定了它们对应的数据类型,例如日期类型 Date、长整数类型 long 和 字符串类型 text。
如果索引文档包含没有定义数据类型的新字段,Elasticsearch将使用动态映射来估计字段的类型,并在必要时将其从一种类型转换为另一种类型。
如果Elasticsearch无法执行此转换,它将引发“ mapper_parsing_exception无法解析” 异常。
如果此类异常太多会降低索引吞吐量。
实战举例如下:
为避免此问题,可以在创建索引时显示定义Mapping,明确敲定字段类型。或者可以使用 _mapping 动态添加新字段映射。
动态更新索引实战:
请注意:虽然可以通过如上命令动态添加字段,但是不能更改现有字段映射。
若想做字段类型的修改,需要重新定义Mapping 结合 reindex 和 alias 别名 实现。
批量索引大型数据集通常更有效。
例如,您可以执行一个批量操作来索引 1,000 个文档,而不是使用 1,000 个索引操作。
批量操作可以通过 bulk API 完成。
批量操作实战:
但是,此过程容易出错。执行批量操作的过程中,你需要仔细检查:数据类型不匹配和空值匹配等问题。
对于批量 API ,你需要格外警惕,因为即使有数百个肯定的响应,批量中的某些索引请求也可能失败。
批量操作捕获错误实战:
除了提前设置具有所有适当条件的批量 API 之外,还要浏览响应列表并检查每个响应,以确保所有数据均按预期索引。
如果在指定的搜索时间内未收到响应,则请求将失败并返回错误消息。这称为搜索超时。
搜索超时很常见,多种原因都可以导致搜索超时,例如:大型数据集或占用大量内存的查询。
要消除搜索超时,可以通过如下实现解决:
3.1 增加 elasticsearch.requestTimeout
设置注意:应该在 HTTP 客户端而不是 Elasticsearch 中指定 timeout 值,Elasticsearch 端没有请求超时参数。
kibana 请求显示超时,优化方案如下:
kibana 默认请求等待时间是 30 秒,可以在 kibana.yml 中调整该值。
3.2 减少每个请求返回的文档数量
不要将请求的 size 值设置太大,结合:from、size 深度翻页机制实现。
全量遍历借助 scroll 实现。
3.3 缩小时间范围
请求时间范围越长(比如 时间跨度周期 1 年以上的数据),请求数据量越大,超时的可能性越高。
3.4 调整内存设置
通过配置单个查询的内存断路器来限制单个查询的内存使用量。
如:将 index.breaker.request.limit 限制为 40%,默认是 60%。
集群层面设置请求熔断内存实战:
通过将search.max_buckets设置为 5000 (默认值:10000)来限制用于聚合的存储桶数。
3.5 优化查询、索引和分片。
3.6 启用慢速搜索日志
监视搜索运行时间,扫描繁重的搜索等等。
慢日志开启实战:
发生 All Shards Failed 的几种情况:
• 当读取请求无法从分片获得响应时
• 当由于集群或节点仍处于初始启动过程而无法搜索数据
• 当分片丢失或处于恢复模式并且集群为红色时
造成 All Shards Failed 可能的原因:
• 节点可能已断开连接或重新连接
• 正在查询的分片可能正在恢复中,因此不可用
• 磁盘可能已损坏
• 搜索query 语句可能写的有问题。例如,引用字段类型错误的字段。
• 配置错误可能导致操作失败。
问题排查实战举例:
使节点保持健康,必须确保没有将 JVM 内存换出到磁盘。
发生系统 swapping (交换)的时候 Elasticsearch 节点的性能会非常差,也会影响节点的稳定性。
所以要不惜一切代价来避免 swapping 。swapping会导致Java GC的周期延迟从毫秒级恶化到分钟,更严重的是会引起节点响应延迟甚至脱离集群。
限制 elasticsearch占用的内存情况,可选择少用swap。而:启用 bootstrap.memory_lock 就是限制交换的三种方案之一。
在 elasticsearch.yml 中 启动 memory_lock 实践:
Bootstrap 检查会在 Elasticsearch 开始之前检查各种设置和配置,以确保其可以安全运行。
如果引导检查失败,则它们可以阻止 Elasticsearch 启动(如果处于生产模式)或在开发模式下发出警告日志。
建议你熟悉引导检查所强制执行的设置,并注意它们在开发和生产模式上是不同的。通过将系统属性
es.enforce.bootstrap.checks设置为true,可以强制执行引导检查。
主要检查内容包含但不限于:
• 堆的大小检查
• 文件描述符
• 最大线程数
• 文件大小限制
• 最大虚拟内存
• 最大映射数
• 客户端jvm检查
• 垃圾收集检查
• OnError和OnOutOfMemoryError检查 ......
最佳实践:在 jvm.option 中添加如下配置后重启 Elasticsearch。
在Elasticsearch中,传输模块核心功能是:集群中节点之间的通信。
传输错误Transport errors 经常出现,失败可能是如下的原因引起的:
• 分片丢失
• 设置冲突
• 数据建模不合理
• 网络故障
• .....
常见的 Transport errors 错误如下:
原因分析:
当没有足够的可用磁盘空间供 Elasticsearch 在节点之间分配时,可能会发生这种情况。
解决方案:
• 增加磁盘空间
• 删除旧数据以释放空间
• 更新索引只读模式。
注意:当磁盘使用率>=95%,index.blocks.read_only_allow_delete设置是防止节点用完磁盘空间的最后手段。不再允许写入,只能删除。
以下命令能重置索引上的只读索引块:
如果你不想仅仅一次处理一条错误消息,当你处理的问题多了以后,你会发现:很多错误和异常与如下三个更深层次的问题相关:
• 安装和配置问题
• 索引新数据问题
• 集群运行变慢问题
深究拆解如下:
9.1 安装和配置问题
快速安装 Elasticsearch 很容易,但是要确保其生产级别的运行,需要仔细核对配置。
这可以帮助避免各种错误和异常,例如:引导检查失败 bootstrap checks failure 问题。
9.2 索引新数据问题
在 Elasticsearch 中,你必须非常仔细的对字段命名、正确使用模板 template、数据建模规范化。
仔细核对这些参数配置,可以帮助你避免诸如:映射 mapping 异常和批量索引错误( bulk index errors)之类的问题。
9.3 集群速度变慢问题
随着数据规模的扩大,以及操作频繁度的扩展,Elasticsearch 有时会发生意外导致检索响应速度慢,并可能弹出超时报错。
因此,你必须持续监控集群的如下指标内容:
• 借助 kibana 或者 cerebro 等可视化工具观察错误率及走势
• 监控错误日志
• 核对拒绝的指标
以提前将可能错误扼杀在摇篮阶段,并确保集群一切正常。
Elasticsearch 运维或开发实战必定会遇到错误或异常。
尽管我们无法完全避免,但是可以采用一些最佳实践来帮助减少错误或异常的发生,并在出现问题时更有效地解决问题。
快速有效地解决集群缓慢等复杂问题离不开如下三点:
第一:密切关注各项设置和配置;
第二:索引新数据时要小心;
第三:确保集群各项指标可被监视与可视化查看。
简而言之,你应该将错误和异常视为优化 Elasticsearch 集群基础架构的机会,而不必过分担心它们的出现。