SpringBoot整合Sharding实现水平分表

fatherlaw
发布于 2022-9-1 17:52
浏览
0收藏

上一篇文章,阿粉讲了关于分库分表是怎么进行切分的,都有什么切分方式,垂直切分和水平切分,还有就是使用什么工具进行分库分表,Sharding和Mycat我们回顾一下:

垂直分表: 将一张宽表(字段很多的表), 按照字段的访问频次进行拆分,就是按照表单结构进行 拆。

垂直分库: 根据不同的业务,将表进行分类, 拆分到不同的数据库. 这些库可以部署在不同的服 务器,分摊访问压力.

水平分库: 将一张表的数据 ( 按照数据行) 分到多个不同的数据库.每个库的表结构相同

水平分表: 将一张表的数据 ( 按照数据行) , 分配到同一个数据库的多张表中,每个表都只有一部 分数据.

接下来阿粉就实战使用SpringBoot和Mysql 来说实现分库分表,直接先从Sharding 开始,毕竟是jar包的方式,相对来说比较简单。

搭建Sharding环境完成分库分表
我们首先先从分表来开始我们使用Sharding-JDBC的操作。

Sharding-JDBC分表
第一步创建数据库及其对应的相同的两张表结构的表

我们先从我们的mysql上创建我们的数据库,直接起名叫做order库

SpringBoot整合Sharding实现水平分表-鸿蒙开发者社区
 
然后我们分别创建两个表,分别是order_1 和order2。

这两张表是订单表拆分后的表,我们通过Sharding-Jdbc向订单表插入数据,按照一定的分片规则,主键 为偶数的落入order_1表 ,为奇数的落入order_2表, 再通过Sharding-Jdbc 进行查询.

DROP TABLE IF EXISTS order_1;
CREATE TABLE order_1 (
order_id BIGINT(20) PRIMARY KEY AUTO_INCREMENT ,
user_id INT(11) ,
product_name VARCHAR(128),
COUNT INT(11)
);

DROP TABLE IF EXISTS order_2;
CREATE TABLE order_2 (
order_id BIGINT(20) PRIMARY KEY AUTO_INCREMENT ,
user_id INT(11) ,
product_name VARCHAR(128),
COUNT INT(11)
);


第二步

创建一个SpringBoot的项目,然后配置Sharding的依赖

SpringBoot整合Sharding实现水平分表-鸿蒙开发者社区
依赖如下:

<dependency>
            <groupId>mysql</groupId>
            <artifactId>mysql-connector-java</artifactId>
        </dependency>

        <dependency>
            <groupId>org.mybatis.spring.boot</groupId>
            <artifactId>mybatis-spring-boot-starter</artifactId>
        </dependency>

        <dependency>
            <groupId>com.alibaba</groupId>
            <artifactId>druid-spring-boot-starter</artifactId>
        </dependency>


        <dependency>
            <groupId>org.apache.shardingsphere</groupId>
            <artifactId>sharding-jdbc-spring-boot-starter</artifactId>
        </dependency>

        <dependency>
            <groupId>org.mybatis</groupId>
            <artifactId>mybatis-typehandlers-jsr310</artifactId>
        </dependency>

        <dependency>
            <groupId>junit</groupId>
            <artifactId>junit</artifactId>
            <scope>test</scope>
        </dependency>

        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-test</artifactId>
        </dependency>

        <!-- https://mvnrepository.com/artifact/javax.xml.bind/jaxb-api -->
        <dependency>
            <groupId>javax.xml.bind</groupId>
            <artifactId>jaxb-api</artifactId>
            <version>2.3.0-b170201.1204</version>
        </dependency>

        <!-- https://mvnrepository.com/artifact/javax.activation/activation -->
        <dependency>
            <groupId>javax.activation</groupId>
            <artifactId>activation</artifactId>
            <version>1.1</version>
        </dependency>

        <!-- https://mvnrepository.com/artifact/org.glassfish.jaxb/jaxb-runtime -->
        <dependency>
            <groupId>org.glassfish.jaxb</groupId>
            <artifactId>jaxb-runtime</artifactId>
            <version>2.3.0-b170127.1453</version>
        </dependency>

第三步

第三步也是我们这里相对来说比较重要的一步,那就是配置分片规则,因为这里的分表是直接把数据进行水平拆分成到2个表中,所以属于水平切分数据表的操作,配置如下:

•  基础配置

spring:
  application:
    name: sharding-jdbc-simple
  http:
    encoding:
      enabled: true
      charset: UTF-8
      force: true
  main:
    allow-bean-definition-overriding: true

•  配置数据源

shardingsphere:
    datasource:
      names: db1
      db1:
        type: com.alibaba.druid.pool.DruidDataSource
        driver-class-name: com.mysql.jdbc.Driver
        url: jdbc:mysql://127.0.0.1:3306/order?characterEncoding=UTF-8&useSSL=false
        username: root
        password: 123456
    sharding:
      tables:
        order:
          actual-data-nodes: db1.pay_order_$->{1..2}
          key-generator:
            column: order_id
            type: SNOWFLAKE
          table-strategy:
            inline:
              sharding-column: order_id
              algorithm-expression: pay_order_$->{order_id % 2 + 1}
    props:
      sql:
        show: true
server:
  servlet:
    context-path: /sharding-jdbc
mybatis:
  configuration:
    map-underscore-to-camel-case: true

上面的配置,就是完整的配置Sharding-JDBC配置了,其中还包括了 Mybatis 的一个配置,以及SQL日志打印。

接下来我们直接写一个Junit测试,然后在我们的数据库中直接插入数据看一下,偶数订单在表1中,基数订单在表2中。

Junit测试

@Mapper
@Component
public interface OrderDao {
    /**
     * 新增订单
     * */
    @Insert("INSERT INTO order(user_id,product_name,COUNT) VALUES(#{user_id},#{product_name},#{count})")
    int insertOrder(@Param("user_id") int user_id,@Param("product_name") String product_name,@Param("count") int count);
}

//测试
public class OrderTest {

    @Autowired
    OrderDao orderDao;

    @Test
    public void testInsertOrder(){

        for (int i = 0; i < 10; i++) {
            orderDao.insertOrder(100+i,"大冰箱"+i,10);
        }
    }
}


当我们执行完毕的时候,我们去数据库里面去看一下这个数据是不是分开保存到两个不同表,在看之前先看看打印的sql日志。

SQLStatement: InsertStatement(super=DMLStatement(super=AbstractSQLStatement(type=DML, tables=Tables(tables=[Table(name=order, alias=Optional.absent())]), routeConditions=Conditions(orCondition=OrCondition(andConditions=[AndCondition(conditions=[])])), encryptConditions=Conditions(orCondition=OrCondition(andConditions=[])), sqlTokens=[TableToken(tableName=order, quoteCharacter=NONE, schemaNameLength=0), SQLToken(startIndex=17)], parametersIndex=3, logicSQL=INSERT INTO order(user_id,product_name,COUNT) VALUES(?,?,?)), deleteStatement=false, updateTableAlias={}, updateColumnValues={}, whereStartIndex=0, whereStopIndex=0, whereParameterStartIndex=0, whereParameterEndIndex=0), columnNames=[user_id, product_name, COUNT], values=[InsertValue(columnValues=[org.apache.shardingsphere.core.parse.old.parser.expression.SQLPlaceholderExpression@d611f1c, org.apache.shardingsphere.core.parse.old.parser.expression.SQLPlaceholderExpression@4f2d014a, org.apache.shardingsphere.core.parse.old.parser.expression.SQLPlaceholderExpression@51fc862e])])
2022-06-13 13:47:59.923  INFO 7384 --- [           main] ShardingSphere-SQL                       : Actual SQL: db1 ::: INSERT INTO order_1 (user_id, product_name, COUNT, order_id) VALUES (?, ?, ?, ?) ::: [107, 大冰箱7, 10, 743103497175564288]
2022-06-13 13:47:59.976  INFO 7384 --- [           main] ShardingSphere-SQL                       : Rule Type: sharding
2022-06-13 13:47:59.976  INFO 7384 --- [           main] ShardingSphere-SQL                       : Logic SQL: INSERT INTO order(user_id,product_name,COUNT) VALUES(?,?,?)
2022-06-13 13:47:59.976  INFO 7384 --- [           main] ShardingSphere-SQL                       : SQLStatement: InsertStatement(super=DMLStatement(super=AbstractSQLStatement(type=DML, tables=Tables(tables=[Table(name=order, alias=Optional.absent())]), routeConditions=Conditions(orCondition=OrCondition(andConditions=[AndCondition(conditions=[])])), encryptConditions=Conditions(orCondition=OrCondition(andConditions=[])), sqlTokens=[TableToken(tableName=order, quoteCharacter=NONE, schemaNameLength=0), SQLToken(startIndex=17)], parametersIndex=3, logicSQL=INSERT INTO order(user_id,product_name,COUNT) VALUES(?,?,?)), deleteStatement=false, updateTableAlias={}, updateColumnValues={}, whereStartIndex=0, whereStopIndex=0, whereParameterStartIndex=0, whereParameterEndIndex=0), columnNames=[user_id, product_name, COUNT], values=[InsertValue(columnValues=[org.apache.shardingsphere.core.parse.old.parser.expression.SQLPlaceholderExpression@d611f1c, org.apache.shardingsphere.core.parse.old.parser.expression.SQLPlaceholderExpression@4f2d014a, org.apache.shardingsphere.core.parse.old.parser.expression.SQLPlaceholderExpression@51fc862e])])
2022-06-13 13:47:59.977  INFO 7384 --- [           main] ShardingSphere-SQL                       : Actual SQL: db1 ::: INSERT INTO order_2 (user_id, product_name, COUNT, order_id) VALUES (?, ?, ?, ?) ::: [108, 大冰箱8, 10, 743103497402056705]
2022-06-13 13:48:00.036  INFO 7384 --- [           main] ShardingSphere-SQL                       : Rule Type: sharding
2022-06-13 13:48:00.036  INFO 7384 --- [           main] ShardingSphere-SQL                       : Logic SQL: INSERT INTO order(user_id,product_name,COUNT) VALUES(?,?,?)
2022-06-13 13:48:00.036  INFO 7384 --- [           main] ShardingSphere-SQL                       : SQLStatement: InsertStatement(super=DMLStatement(super=AbstractSQLStatement(type=DML, tables=Tables(tables=[Table(name=order, alias=Optional.absent())]), routeConditions=Conditions(orCondition=OrCondition(andConditions=[AndCondition(conditions=[])])), encryptConditions=Conditions(orCondition=OrCondition(andConditions=[])), sqlTokens=[TableToken(tableName=order, quoteCharacter=NONE, schemaNameLength=0), SQLToken(startIndex=17)], parametersIndex=3, logicSQL=INSERT INTO order(user_id,product_name,COUNT) VALUES(?,?,?)), deleteStatement=false, updateTableAlias={}, updateColumnValues={}, whereStartIndex=0, whereStopIndex=0, whereParameterStartIndex=0, whereParameterEndIndex=0), columnNames=[user_id, product_name, COUNT], values=[InsertValue(columnValues=[org.apache.shardingsphere.core.parse.old.parser.expression.SQLPlaceholderExpression@d611f1c, org.apache.shardingsphere.core.parse.old.parser.expression.SQLPlaceholderExpression@4f2d014a, org.apache.shardingsphere.core.parse.old.parser.expression.SQLPlaceholderExpression@51fc862e])])
2022-06-13 13:48:00.036  INFO 7384 --- [           main] ShardingSphere-SQL                       : Actual SQL: db1 ::: INSERT INTO order_1 (user_id, product_name, COUNT, order_id) VALUES (?, ?, ?, ?) ::: [109, 大冰箱9, 10, 743103497649520640]


我们再看看数据库:

order2:

SpringBoot整合Sharding实现水平分表-鸿蒙开发者社区
order1:

SpringBoot整合Sharding实现水平分表-鸿蒙开发者社区
非常完美,直接成功,接下来就是直接执行查询,然后去查询我们对应表中的数据。

我们再来一个测试看一下:

    @Test
    public void testFindOrderByIds(){
    List<Long> ids = new ArrayList<>();
        ids.add(743103495833387008L);
        ids.add(743103495321681921L);
        
        List<Map> list = orderDao.findOrderByIds(ids);
        System.out.println(list);
    }


    


同样的,我们给定1表和2表中的一个order_id 来进行 In 查询,看是否能正确返回我们想要的数据:

 

    /**
     * 根据ID 查询订单
     * */
    @Select({"<script>"+
            "select * from order p where p.order_id in " +
                    "<foreach collection='orderIds' item='id' open='(' separator = ',' close=')'>#{id}</foreach>"
            +"</script>"})
    List<Map> findOrderByIds(@Param("orderIds") List<Long> orderIds);


接下来就是看结果的时刻,

[{user_id=101, COUNT=10, order_id=743103495833387008, product_name=大冰箱1}, {user_id=100, COUNT=10, order_id=743103495321681921, product_name=大冰箱0}]

很成功,我们使用Sharding-JDBC 进行单库水平切分表的操作已经完成了。你学会了么?如果有兴趣关注阿粉,阿粉在接下来的文章中再来说说SpringBoot整合水平分库。敬请期待!

参考:拉勾教育-MySQL分库分表和优化实战

 

本文转载自公共号Java极客技术。

分类
标签
已于2022-9-1 17:52:32修改
收藏
回复
举报
回复
    相关推荐