回复
Kubeedge - 6:AI协同子项目-Sedna 原创
Piwriw.
发布于 2023-4-20 12:01
浏览
0收藏
Kubeedge - 6:AI协同子项目-Sedna
什么是 Sedna
- Sedna是在KubeEdge SIG AI孵化的边云协同AI项目。得益于 KubeEdge 提供的边云协同能力,Sedna 可以实现跨边云协同训练和协同推理能力,如联合推理、增量学习、联邦学习和终身学习。Sedna支持流行的AI框架,如TensorFlow,Pytorch,PaddlePaddle,MindSpore。
- Sedna可以简单地为现有的训练和推理脚本启用边缘云协同功能,从而带来降低成本、提高模型性能和保护数据隐私的好处
安装Sedna
环境准备
-
- 1VM
-
- 2CPU(个人建议4CPU)
-
- 2GB+MEMORY(建议4G+)
-
- 10GB+ free disk space
-
- Internet connection(docker hub, github etc.)
-
- Linux platform, such as ubuntu/centos
-
- Docker 17.06+
- 特别提醒:当你运行样例的时候,发现卡死,线查看主机的CPU和运行占用情况,所以要求CPU和内存要最好4CPU+4G
Sedna集群安装
环境:
-
- 安装好K8S
-
- K8S version >=1.16
-
- KubeEdge version>=1.8
-
- 部署安装好EdgeMesh
针对于访问GitHub困难的安装
- 首先要通过“正常安装”中的手动设置安装
- 脚本安装失败,超时主要是拉取gtihubyaml文件失败了,我们只需要事先下载移动到对应位置就好了
主要就是这个目录下
/opt/sedna/build/crds
# YAML 存放位置:https://github.com/kubeedge/sedna/tree/main/build/crds
# 主要拉取的就是这几个YAML文件, 当然还有另外一个gm文件夹,你如果拉取不下来,也可以仿造
sedna.io_datasets.yaml
sedna.io_federatedlearningjobs.yaml
sedna.io_incrementallearningjobs.yaml
sedna.io_jointinferenceservices.yaml
sedna.io_lifelonglearningjobs.yaml
sedna.io_models.yaml
- 你需要手动下载https://raw.githubusercontent.com/kubeedge/sedna/main/scripts/installation/install.sh中的install.sh文件夹,修改其中的
download_yamls函数
download_yamls() {
yaml_files=(
sedna.io_datasets.yaml
sedna.io_federatedlearningjobs.yaml
sedna.io_incrementallearningjobs.yaml
sedna.io_jointinferenceservices.yaml
sedna.io_lifelonglearningjobs.yaml
sedna.io_models.yaml
)
#只需要注释掉这一行就好了,然后通过bash命令启动,这个修改好的shell脚本
# _download_yamls build/crds
yaml_files=(
gm.yaml
)
_download_yamls build/gm/rbac
}
正常安装
一行命令安装:
curl https://raw.githubusercontent.com/kubeedge/sedna/main/scripts/installation/install.sh
手动设置安装:
https://raw.githubusercontent.com/kubeedge/sedna/main/scripts/installation/install.sh
运行Using Joint Inference Service in Helmet Detection Scenario¶ Demo
- 基本上按照官网安装就好,唯独注意Create joint inference service需要添加这个dnsPolicy: ClusterFirstWithHostNet
apiVersion: sedna.io/v1alpha1
kind: JointInferenceService
metadata:
name: helmet-detection-inference-example
namespace: default
spec:
edgeWorker:
model:
name: "helmet-detection-inference-little-model"
hardExampleMining:
name: "IBT"
parameters:
- key: "threshold_img"
value: "0.9"
- key: "threshold_box"
value: "0.9"
template:
spec:
nodeName: $EDGE_NODE
containers:
- image: kubeedge/sedna-example-joint-inference-helmet-detection-little:v0.3.0
imagePullPolicy: IfNotPresent
name: little-model
env: # user defined environments
- name: input_shape
value: "416,736"
- name: "video_url"
value: "rtsp://localhost/video"
- name: "all_examples_inference_output"
value: "/data/output"
- name: "hard_example_cloud_inference_output"
value: "/data/hard_example_cloud_inference_output"
- name: "hard_example_edge_inference_output"
value: "/data/hard_example_edge_inference_output"
resources: # user defined resources
requests:
memory: 64M
cpu: 100m
limits:
memory: 2Gi
volumeMounts:
- name: outputdir
mountPath: /data/
volumes: # user defined volumes
- name: outputdir
hostPath:
# user must create the directory in host
path: /joint_inference/output
type: Directory
cloudWorker:
model:
name: "helmet-detection-inference-big-model"
template:
spec:
nodeName: $CLOUD_NODE
dnsPolicy: ClusterFirstWithHostNet <----------- LOOK AT HERE!!!
containers:
- image: kubeedge/sedna-example-joint-inference-helmet-detection-big:v0.3.0
name: big-model
imagePullPolicy: IfNotPresent
env: # user defined environments
- name: "input_shape"
value: "544,544"
resources: # user defined resources
requests:
memory: 2Gi
©著作权归作者所有,如需转载,请注明出处,否则将追究法律责任
分类
标签
赞
1
收藏
回复
相关推荐