
鸿蒙跨端人脸年龄检测系统开发指南 原创
鸿蒙跨端人脸年龄检测系统开发指南
一、项目概述
本文基于HarmonyOS的AI能力(@ohos.ai)和分布式数据同步技术,开发一款简易人脸年龄检测系统。该系统能够通过设备摄像头实时检测人脸并估算年龄,同时实现多设备间的检测结果同步,借鉴了《鸿蒙跨端U同步》中多设备数据同步的技术原理。
二、系统架构
±--------------------+ ±--------------------+ ±--------------------+
主设备 <-----> 分布式数据总线 <-----> 从设备
(Primary Device) (Distributed Bus) (Secondary Device)
±---------±---------+ ±---------±---------+ ±---------±---------+
±---------v----------+ ±---------v----------+ ±---------v----------+
摄像头采集模块 人脸检测模块 数据同步模块
(Camera Service) (Face Detection) (Data Sync)
±--------------------+ ±--------------------+ ±--------------------+
三、核心代码实现
人脸检测服务
// src/main/ets/service/FaceDetectionService.ts
import { faceDetection } from ‘@ohos.ai.faceDetection’;
import { distributedData } from ‘@ohos.data.distributedData’;
import { BusinessError } from ‘@ohos.base’;
import { camera } from ‘@ohos.multimedia.camera’;
import { image } from ‘@ohos.multimedia.image’;
interface FaceInfo {
faceId: number;
age: number;
confidence: number;
timestamp: number;
position: {
left: number;
top: number;
right: number;
bottom: number;
};
export class FaceDetectionService {
private static instance: FaceDetectionService;
private faceDetector: faceDetection.FaceDetector | null = null;
private kvStore: distributedData.KVStore | null = null;
private readonly STORE_ID = ‘face_data_store’;
private cameraInput: camera.CameraInput | null = null;
private previewOutput: camera.PreviewOutput | null = null;
private faceInfos: FaceInfo[] = [];
private constructor() {
this.initFaceDetector();
this.initKVStore();
this.initCamera();
public static getInstance(): FaceDetectionService {
if (!FaceDetectionService.instance) {
FaceDetectionService.instance = new FaceDetectionService();
return FaceDetectionService.instance;
private async initFaceDetector(): Promise<void> {
try {
this.faceDetector = faceDetection.createFaceDetector();
const config: faceDetection.FaceDetectionConfig = {
age: true, // 启用年龄检测
featurePoints: false,
facialExpression: false,
gender: false,
hat: false,
glasses: false
};
await this.faceDetector.init(config);
catch (e) {
console.error(Failed to initialize face detector. Code: {e.code}, message: {e.message});
}
private async initKVStore(): Promise<void> {
try {
const options: distributedData.KVManagerConfig = {
bundleName: ‘com.example.facedetection’,
userInfo: {
userId: ‘0’,
userType: distributedData.UserType.SAME_USER_ID
};
const kvManager = distributedData.createKVManager(options);
this.kvStore = await kvManager.getKVStore({
storeId: this.STORE_ID,
options: {
createIfMissing: true,
encrypt: false,
backup: false,
autoSync: true,
kvStoreType: distributedData.KVStoreType.SINGLE_VERSION
});
// 注册数据变化监听
this.kvStore.on('dataChange', distributedData.SubscribeType.SUBSCRIBE_TYPE_REMOTE, (data) => {
data.insertEntries.forEach((entry: distributedData.Entry) => {
if (entry.key === 'face_infos') {
this.notifyFaceInfoChange(entry.value.value as FaceInfo[]);
});
});
catch (e) {
console.error(Failed to initialize KVStore. Code: {e.code}, message: {e.message});
}
private async initCamera(): Promise<void> {
try {
const cameraManager = camera.getCameraManager();
const cameras = cameraManager.getSupportedCameras();
if (cameras.length === 0) {
console.error(‘No camera available’);
return;
// 使用后置摄像头
this.cameraInput = cameraManager.createCameraInput(cameras[0]);
await this.cameraInput.open();
// 创建预览输出
const surfaceId = 'previewSurface';
this.previewOutput = cameraManager.createPreviewOutput(surfaceId);
// 设置帧回调
this.previewOutput.on('frameStart', () => {
this.onFrame();
});
// 创建会话并开始预览
const captureSession = cameraManager.createCaptureSession();
await captureSession.beginConfig();
await captureSession.addInput(this.cameraInput);
await captureSession.addOutput(this.previewOutput);
await captureSession.commitConfig();
await captureSession.start();
catch (e) {
console.error(Failed to initialize camera. Code: {e.code}, message: {e.message});
}
private async onFrame(): Promise<void> {
if (!this.faceDetector || !this.previewOutput) return;
try {
const imageObj = await this.previewOutput.getFrame();
const detectionResult = await this.faceDetector.detect(imageObj);
const newFaceInfos: FaceInfo[] = detectionResult.faces.map((face, index) => ({
faceId: index,
age: face.age || 0,
confidence: face.confidence || 0,
timestamp: Date.now(),
position: {
left: face.rect.left,
top: face.rect.top,
right: face.rect.right,
bottom: face.rect.bottom
}));
this.faceInfos = newFaceInfos;
// 同步到其他设备
if (this.kvStore) {
await this.kvStore.put('face_infos', { value: newFaceInfos });
// 释放图像资源
imageObj.release();
catch (e) {
console.error(Failed to process frame. Code: {e.code}, message: {e.message});
}
private notifyFaceInfoChange(infos: FaceInfo[]): void {
// 实际应用中这里应该通知UI更新
console.log(‘Face infos updated:’, infos);
this.faceInfos = infos;
public async getCurrentFaceInfos(): Promise<FaceInfo[]> {
if (!this.kvStore) return [];
try {
const entry = await this.kvStore.get('face_infos');
return entry?.value || [];
catch (e) {
console.error(Failed to get face infos. Code: {e.code}, message: {e.message});
return [];
}
public async destroy(): Promise<void> {
if (this.faceDetector) {
await this.faceDetector.release();
if (this.kvStore) {
this.kvStore.off('dataChange');
if (this.cameraInput) {
await this.cameraInput.close();
}
人脸检测组件
// src/main/ets/components/FaceDetectionView.ets
@Component
export struct FaceDetectionView {
private faceService = FaceDetectionService.getInstance();
@State faceInfos: FaceInfo[] = [];
@State previewSurfaceId: string = ‘previewSurface’;
@State showAge: boolean = true;
aboutToAppear(): void {
this.loadFaceInfos();
private async loadFaceInfos(): Promise<void> {
this.faceInfos = await this.faceService.getCurrentFaceInfos();
build() {
Stack() {
// 摄像头预览
CameraPreview({ surfaceId: this.previewSurfaceId })
.width('100%')
.height('100%');
// 人脸框和年龄显示
ForEach(this.faceInfos, (face) => {
Column() {
if (this.showAge) {
Text(${face.age}岁)
.fontSize(16)
.fontColor('#FFFFFF')
.backgroundColor('#88000000')
.borderRadius(10)
.padding(5)
.margin({ bottom: 5 });
// 人脸框
Rect()
.width(face.position.right - face.position.left)
.height(face.position.bottom - face.position.top)
.position({ x: face.position.left, y: face.position.top })
.border({ width: 2, color: '#FF4081' })
.borderRadius(5);
.position({ x: face.position.left, y: face.position.top })
})
.width(‘100%’)
.height('100%')
.onAppear(() => {
this.faceService.getCurrentFaceInfos().then((infos) => {
this.faceInfos = infos;
});
});
}
主界面实现
// src/main/ets/pages/FaceDetectionPage.ets
import { FaceDetectionService } from ‘…/service/FaceDetectionService’;
import { FaceDetectionView } from ‘…/components/FaceDetectionView’;
@Entry
@Component
struct FaceDetectionPage {
@State showAge: boolean = true;
@State deviceList: string[] = [];
private faceService = FaceDetectionService.getInstance();
build() {
Column() {
// 标题
Text(‘跨端人脸年龄检测’)
.fontSize(24)
.fontWeight(FontWeight.Bold)
.margin({ bottom: 20 });
// 检测视图
FaceDetectionView()
.width('90%')
.height('60%')
.margin({ bottom: 20 });
// 控制面板
Row() {
Toggle({ type: ToggleType.Checkbox, isOn: this.showAge })
.onChange((isOn: boolean) => {
this.showAge = isOn;
})
.margin({ right: 10 });
Text('显示年龄')
.fontSize(16);
.justifyContent(FlexAlign.Start)
.width('90%')
.margin({ bottom: 20 });
// 设备列表
if (this.deviceList.length > 0) {
Column() {
Text('已连接设备')
.fontSize(18)
.fontWeight(FontWeight.Bold)
.margin({ bottom: 10 });
ForEach(this.deviceList, (device) => {
Text(device)
.fontSize(14)
.margin({ bottom: 5 });
})
.width(‘90%’)
.padding(15)
.backgroundColor('#FFFFFF')
.borderRadius(10)
.shadow({ radius: 5, color: '#E0E0E0', offsetX: 0, offsetY: 2 });
}
.width('100%')
.height('100%')
.padding(20)
.backgroundColor('#F5F5F5')
.onAppear(() => {
// 模拟获取设备列表
setTimeout(() => {
this.deviceList = ['设备1', '设备2'];
}, 1000);
});
}
四、与游戏同步技术的结合点
分布式数据同步:借鉴游戏中多设备玩家数据同步机制,实现人脸检测结果的跨设备同步
实时更新机制:类似游戏中的实时状态更新,确保多设备间检测结果的一致性
设备识别:类似游戏中玩家设备识别,标记检测结果的来源设备
冲突解决策略:使用时间戳优先策略解决多设备同时更新检测结果的冲突
数据压缩传输:优化人脸检测数据的传输效率,类似游戏中的网络优化
五、关键特性实现
人脸检测与年龄估计:
const detectionResult = await this.faceDetector.detect(imageObj);
const newFaceInfos: FaceInfo[] = detectionResult.faces.map((face, index) => ({
faceId: index,
age: face.age || 0,
confidence: face.confidence || 0,
timestamp: Date.now(),
position: {
left: face.rect.left,
top: face.rect.top,
right: face.rect.right,
bottom: face.rect.bottom
}));
检测结果同步:
if (this.kvStore) {
await this.kvStore.put('face_infos', { value: newFaceInfos });
摄像头帧处理:
this.previewOutput.on('frameStart', () => {
this.onFrame();
});
分布式数据监听:
this.kvStore.on('dataChange', distributedData.SubscribeType.SUBSCRIBE_TYPE_REMOTE, (data) => {
data.insertEntries.forEach((entry: distributedData.Entry) => {
if (entry.key === 'face_infos') {
this.notifyFaceInfoChange(entry.value.value as FaceInfo[]);
});
});
六、性能优化策略
帧率控制:
// 可以设置适当的帧率,避免处理每一帧
const targetFps = 10;
let lastProcessTime = 0;
if (Date.now() - lastProcessTime < 1000 / targetFps) return;
lastProcessTime = Date.now();
数据压缩传输:
// 只传输必要的数据,减少数据量
const compressedInfos = newFaceInfos.map(info => ({
a: info.age,
c: info.confidence,
p: [info.position.left, info.position.top, info.position.right, info.position.bottom]
}));
模型轻量化:
// 使用轻量级模型配置
const config: faceDetection.FaceDetectionConfig = {
age: true,
featurePoints: false, // 关闭不需要的特征点检测
facialExpression: false,
gender: false
};
资源释放管理:
public async destroy(): Promise<void> {
if (this.faceDetector) {
await this.faceDetector.release();
if (this.cameraInput) {
await this.cameraInput.close();
}
七、项目扩展方向
多人脸跟踪:实现多个人脸的持续跟踪和识别
表情识别:扩展系统以识别面部表情
性别识别:增加性别检测功能
历史数据分析:记录和分析历史检测数据
隐私保护:增加本地处理选项,避免敏感数据传输
八、总结
本简易人脸年龄检测系统实现了以下核心功能:
基于HarmonyOS AI能力的人脸检测和年龄估计
实时摄像头帧处理和结果显示
检测结果的分布式同步
直观的检测结果显示界面
通过借鉴游戏中的多设备同步技术,我们构建了一个高效、实时的人脸检测系统。该项目展示了HarmonyOS在AI能力和分布式技术方面的强大功能,为开发者提供了人脸检测应用开发的参考方案。
