OpenHarmony设备开发 小型系统芯片移植指导

zh_ff
发布于 2023-3-22 11:09
浏览
0收藏

标准系统移植指南

本文描述了移植一块开发板的通用步骤,和具体芯片相关的详细移植过程无法在此一一列举。后续社区还会陆续发布开发板移植的实例供开发者参考。

定义开发板

本文以移植名为MyProduct的开发板为例讲解移植过程,假定MyProduct是MyProductVendor公司的开发板,使用MySoCVendor公司生产的MySOC芯片作为处理器。

定义产品

在“//vendor/MyProductVendor/{product_name}名称的目录下创建一个config.json文件,该文件用于描述产品所使用的SOC 以及所需的子系统。配置如下:

//vendor/MyProductVendor/MyProduct/config.json

{
    "product_name": "MyProduct",
    "version": "3.0",
    "type": "standard",
    "target_cpu": "arm",
    "ohos_version": "OpenHarmony 1.0",
    "device_company": "MyProductVendor",
    "board": "MySOC",
    "enable_ramdisk": true,
    "subsystems": [
      {
        "subsystem": "ace",
        "components": [
          { "component": "ace_engine_lite", "features":[] }
        ]
      },
	...
    ]
}

主要的配置内容

product_name:产品名称 必填

version:版本 必填

type:配置的系统级别,包含(small,standard …) 必填

target_cpu :设备的CPU类型(根据实际情况,这里的target_cpu也可能是arm64 、riscv、 x86等。) 必填

ohos_version:操作系统版本 选填

device_company:device厂商名 必填

board:开发板名称 必填

enable_ramdisk:是否启动ramdisk 必填

kernel_type 选填

kernel_version 选填 kernel_type与 kernel_version在 standard 是固定的不需要写。

subsystems:系统需要启用的子系统。子系统可以简单理解为一块独立构建的功能块。必填

product_company:不体现在配置中,而是目录名,vendor下一级目录就是product_company,BUILD.gn脚本依然可以访问。

已定义的子系统可以在“//build/subsystem_config.json”中找到。当然你也可以定制子系统。

这里建议先拷贝Hi3516DV300 开发板的配置文件,删除掉 hisilicon_products 这个子系统。这个子系统为Hi3516DV300 SOC编译内核,显然不适合MySOC。

移植验证

至此,你可以使用如下命令,启动你产品的构建了:

./build.sh --product-name MyProduct 

构建完成后,可以在“//out/{device_name}/packages/phone/images”目录下看到构建出来的OpenHarmony镜像文件。

内核移植

这一步需要移植Linux内核,让Linux内核可以成功运行起来。

为SOC添加内核构建的子系统

修改文件 //build/subsystem_config.json增加一个子系统. 配置如下:

接着需要修改定义产品的配置文件//vendor/MyProductVendor/MyProduct/config.json,将刚刚定义的子系统加入到产品中。

编译内核

源码中提供了Linux 4.19的内核,归档在//kernel/linux-4.19。本节以该内核版本为例,讲解如何编译内核。

在子系统的定义中,描述了子系统构建的路径path,即​​//device/MySOCVendor/MySOC/build​​。这一节会在这个目录创建构建脚本,告诉构建系统如何构建内核。

建议的目录结构

├── build
│ ├── kernel
│ │     ├── linux
│ │           ├──standard_patch_for_4_19.patch // 基于4.19版本内核的补丁
│ ├── BUILD.gn
│ ├── ohos.build

BUILD.gn是subsystem构建的唯一入口。

期望的构建结果

文件

文件说明

$root_build_dir/packages/phone/images/uImage

内核镜像

$root_build_dir/packages/phone/images/uboot

bootloader镜像

移植验证

启动编译,验证预期的kernel镜像是否成功生成。

用户态启动引导

  1. 用户态进程启动引导总览。

OpenHarmony设备开发 小型系统芯片移植指导-鸿蒙开发者社区

系统上电加载内核后,按照以下流程完成系统各个服务和应用的启动:

  1. 内核启动init进程,一般在bootloader启动内核时通过设置内核的cmdline来指定init的位置;如上图所示的"init=/init root/dev/xxx"。
  2. init进程启动后,会挂载tmpfs,procfs,创建基本的dev设备节点,提供最基本的根文件系统。
  3. init继续启动ueventd监听内核热插拔事件,为这些设备创建dev设备节点;包括block设备各个分区设备都是通过此事件创建。
  4. init进程挂载block设备各个分区(system,vendor),开始扫描各个系统服务的init启动脚本,并拉起各个SA服务。
  5. samgr是各个SA的服务注册中心,每个SA启动时,都需要向samgr注册,每个SA会分配一个ID,应用可以通过该ID访问SA。
  6. foundation是一个特殊的SA服务进程,提供了用户程序管理框架及基础服务;由该进程负责应用的生命周期管理。
  7. 由于应用都需要加载JS的运行环境,涉及大量准备工作,因此appspawn作为应用的孵化器,在接收到foundation里的应用启动请求时,可以直接孵化出应用进程,减少应用启动时间。

2.init。
init启动引导组件配置文件包含了所有需要由init进程启动的系统关键服务的服务名、可执行文件路径、权限和其他信息。每个系统服务各自安装其启动脚本到/system/etc/init目录下。
新芯片平台移植时,平台相关的初始化配置需要增加平台相关的初始化配置文件/vendor/etc/init/init.{hardware}.cfg;该文件完成平台相关的初始化设置,如安装ko驱动,设置平台相关的/proc节点信息。
init相关进程代码在//base/startup/init_lite目录下,该进程是系统第一个进程,无其它依赖。
初始化配置文件具体的开发指导请参考​​​init启动子系统概述​​。

HDF驱动移植

LCD

HDF为LCD设计了驱动模型。支持一块新的LCD,需要编写一个驱动,在驱动中生成模型的实例,并完成注册。

这些LCD的驱动被放置在//drivers/framework/model/display/driver/panel目录中。

  • 创建Panel驱动

在驱动的Init方法中,需要调用RegisterPanel接口注册模型实例。如:

int32_t XXXInit(struct HdfDeviceObject *object)
{
    struct PanelData *panel = CreateYourPanel();

    // 注册
    if (RegisterPanel(panel) != HDF_SUCCESS) {
        HDF_LOGE("%s: RegisterPanel failed", __func__);
        return HDF_FAILURE;
    }
    return HDF_SUCCESS;
}

struct HdfDriverEntry g_xxxxDevEntry = {
    .moduleVersion = 1,
    .moduleName = "LCD_XXXX",
    .Init = XXXInit,
};

HDF_INIT(g_xxxxDevEntry);
  • 配置加载panel驱动产品的所有设备信息被定义在文件//vendor/MyProductVendor/MyProduct/config/device_info/device_info.hcs中。修改该文件,在display的host中,名为device_lcd的device中增加配置。注意:moduleName 要与panel驱动中的moduleName相同。

root {
    ...
    display :: host {
        device_lcd :: device {
            deviceN :: deviceNode {
                policy = 0;
                priority = 100;
                preload = 2;
                moduleName = "LCD_XXXX";
            }
        }
    }
}

更详细的驱动开发指导,请参考 ​​LCD​​。

触摸屏

本节描述如何移植触摸屏驱动。触摸屏的驱动被放置在//drivers/framework/model/input/driver/touchscreen目录中。移植触摸屏驱动主要工作是向系统注册ChipDevice模型实例。

  • 创建触摸屏器件驱动

在目录中创建名为touch_ic_name.c的文件。代码模板如下:注意:请替换ic_name为你所适配芯片的名称。

#include "hdf_touch.h"

static int32_t HdfXXXXChipInit(struct HdfDeviceObject *device)
{
    ChipDevice *tpImpl = CreateXXXXTpImpl();
    if(RegisterChipDevice(tpImpl) != HDF_SUCCESS) {
        ReleaseXXXXTpImpl(tpImpl);
        return HDF_FAILURE;
    }
    return HDF_SUCCESS;
}

struct HdfDriverEntry g_touchXXXXChipEntry = {
    .moduleVersion = 1,
    .moduleName = "HDF_TOUCH_XXXX",
    .Init = HdfXXXXChipInit,
};

HDF_INIT(g_touchXXXXChipEntry);

其中ChipDevice中要提供若干方法。

方法

实现说明

int32_t (*Init)(ChipDevice *device)

器件初始化

int32_t (*Detect)(ChipDevice *device)

器件探测

int32_t (*Suspend)(ChipDevice *device)

器件休眠

int32_t (*Resume)(ChipDevice *device)

器件唤醒

int32_t (*DataHandle)(ChipDevice *device)

从器件读取数据,将触摸点数据填写入device->driver->frameData中

int32_t (*UpdateFirmware)(ChipDevice *device)

固件升级

  • 配置产品,加载器件驱动 产品的所有设备信息被定义在文件//vendor/MyProductVendor/MyProduct/config/device_info/device_info.hcs中。修改该文件,在名为input的host中,名为device_touch_chip的device中增加配置。注意:moduleName 要与触摸屏驱动中的moduleName相同。

更详细的驱动开发指导,请参考 ​​TOUCHSCREEN​​。

WLAN

Wi-Fi驱动分为两部分,一部分负责管理WLAN设备,另一个部分负责处理WLAN流量。HDF WLAN分别为这两部分做了抽象。目前支持SDIO接口的WLAN芯片。

图1 WLAN芯片

OpenHarmony设备开发 小型系统芯片移植指导-鸿蒙开发者社区

支持一款芯片的主要工作是实现一个ChipDriver驱动。实现HDF_WLAN_CORE和NetDevice提供的接口。主要需要实现的接口有:

接口

定义头文件

说明

HdfChipDriverFactory

//drivers/framework/include/wifi/hdf_wlan_chipdriver_manager.h

ChipDriver的Factory,用于支持一个芯片多个Wi-Fi端口

HdfChipDriver

//drivers/framework/include/wifi/wifi_module.h

每个WLAN端口对应一个HdfChipDriver,用来管理一个特定的WLAN端口

NetDeviceInterFace

//drivers/framework/include/net/net_device.h

与协议栈之间的接口,如发送数据、设置网络接口状态等

建议适配按如下步骤操作:

1.创建HDF驱动建议将代码放置在//device/MySoCVendor/peripheral/wifi/chip_name/,文件模板如下:

static int32_t HdfWlanHisiChipDriverInit(struct HdfDeviceObject *device) {
    static struct HdfChipDriverFactory factory = CreateChipDriverFactory();
    struct HdfChipDriverManager *driverMgr = HdfWlanGetChipDriverMgr();
    if (driverMgr->RegChipDriver(&factory) != HDF_SUCCESS) {
        HDF_LOGE("%s fail: driverMgr is NULL!", __func__);
        return HDF_FAILURE;
    }
    return HDF_SUCCESS;
}

struct HdfDriverEntry g_hdfXXXChipEntry = {
    .moduleVersion = 1,
    .Init = HdfWlanXXXChipDriverInit,
    .Release = HdfWlanXXXChipRelease,
    .moduleName = "HDF_WIFI_CHIP_XXX"
};

HDF_INIT(g_hdfXXXChipEntry);

在CreateChipDriverFactory中,需要创建一个HdfChipDriverFactory,接口如下:

接口

说明

const char *driverName

当前driverName

int32_t (*InitChip)(struct HdfWlanDevice *device)

初始化芯片

int32_t (*DeinitChip)(struct HdfWlanDevice *device)

去初始化芯片

void (_ReleaseFactory)(struct HdfChipDriverFactory _factory)

释放HdfChipDriverFactory对象

struct HdfChipDriver _(_Build)(struct HdfWlanDevice *device, uint8_t ifIndex)

创建一个HdfChipDriver;输入参数中,device是设备信息,ifIndex是当前创建的接口在这个芯片中的序号

void (_Release)(struct HdfChipDriver _chipDriver)

释放chipDriver

uint8_t (*GetMaxIFCount)(struct HdfChipDriverFactory *factory)

获取当前芯片支持的最大接口数

HdfChipDriver需要实现的接口有

接口

说明

int32_t (*init)(struct HdfChipDriver *chipDriver, NetDevice *netDev)

初始化当前网络接口,这里需要向netDev提供接口NetDeviceInterFace

int32_t (*deinit)(struct HdfChipDriver *chipDriver, NetDevice *netDev)

去初始化当前网络接口

struct HdfMac80211BaseOps *ops

WLAN基础能力接口集

struct HdfMac80211STAOps *staOps

支持STA模式所需的接口集

struct HdfMac80211APOps *apOps

支持AP模式所需要的接口集

2.编写配置文件,描述驱动支持的设备

在产品配置目录下创建芯片的配置文件//vendor/MyProductVendor/MyProduct/config/wifi/wlan_chip_chip_name.hcs。

注意: 路径中的vendor_name、product_name、chip_name请替换成实际名称。

模板如下:

root {
    wlan_config {
        chip_name :& chipList {
            chip_name :: chipInst {
                match_attr = "hdf_wlan_chips_chip_name"; /* 这是配置匹配属性,用于提供驱动的配置根 */
                driverName = "driverName"; /* 需要与HdfChipDriverFactory中的driverName相同*/
                sdio {
                    vendorId = 0x0296;
                    deviceId = [0x5347];
                }
            }
        }
    }
}

3.编写配置文件,加载驱动

产品的所有设备信息被定义在文件//vendor/MyProductVendor/MyProduct/config/device_info/device_info.hcs中。修改该文件,在名为network的host中,名为device_wlan_chips的device中增加配置。注意:moduleName 要与触摸屏驱动中的moduleName相同。

4.构建驱动

  • 创建内核菜单在//device/MySoCVendor/peripheral目录中创建Kconfig文件,内容模板如下:

config DRIVERS_WLAN_XXX
    bool "Enable XXX WLAN Host driver"
    default n
    depends on DRIVERS_HDF_WIFI
    help
      Answer Y to enable XXX Host driver. Support chip xxx

接着修改文件//drivers/adapter/khdf/linux/model/network/wifi/Kconfig,在文件末尾加入如下代码将配置菜单加入内核中,如:

source "../../../../../device/MySoCVendor/peripheral/Kconfig"
  • 创建构建脚本 在//drivers/adapter/khdf/linux/model/network/wifi/Makefile文件末尾增加配置,模板如下:

HDF_DEVICE_ROOT := $(HDF_DIR_PREFIX)/../device
obj-$(CONFIG_DRIVERS_WLAN_XXX) += $(HDF_DEVICE_ROOT)/MySoCVendor/peripheral/build/standard/

当在内核中开启DRIVERS_WLAN_XXX开关时,会调用//device/MySoCVendor/peripheral/build/standard/中的makefile。更多详细的开发手册,请参考​​WLAN开发​​。

开发移植示例

开发移植示例请参考​​DAYU开发板​​。

一种快速移植OpenHarmony Linux内核的方法

移植概述

本文面向希望将OpenHarmony移植到三方芯片平台硬件的开发者,介绍一种借助三方芯片平台自带Linux内核的现有能力,快速移植OpenHarmony到三方芯片平台的方法。

移植到三方芯片平台的整体思路

内核态层和用户态层

为了更好的解释整个内核移植,首先需要介绍一些概念:

我们可以把OpenHarmony简单的分为

OpenHarmony = OpenHarmony内核态层 + OpenHarmony用户态层

OpenHarmony设备开发 小型系统芯片移植指导-鸿蒙开发者社区

其中OpenHarmony内核层就是上图的紫色部分,可以看到,它主要由内核本身(如Linux Kernel,LiteOS),和一些运行在内核态的一些特性组成,比如HDF等。

而OpenHarmony用户态层,在上图,就是紫色之外的部分。可以看到,由下往上看,它主要由系统服务层,框架层,应用层组成。在这儿我们将这三层整体称为“OpenHarmony用户态层”。

为什么这么区分呢?因为我们这篇文章主要是要讨论如何快速的把OpenHarmony移植到三方芯片平台上。而OpenHarmony的用户态层,整体来说和三方芯片平台的耦合度不高,移植较为方便。而内核态层中的内核本身以及HDF驱动框架等,和三方芯片平台的耦合度较高,是移植的重难点。我们先做这个区分,就是为了先把聚光灯打到我们最需要关注的OpenHarmony内核态层上,开始分析和解题。另外说明,本文只包含Linux内核的快速移植,不包含LiteOS的移植。

获得内核态层的两种方法

为了表述方便,我们在下文部分地方用“OH”代替“OpenHarmony”。

将OH内核态层继续分解

OH内核态层 = OH Linux内核 + OH内核态特性(可选特性或者必选特性,如必选特性HDF,今后的可选特性HMDFS等)

而OH Linux内核 = 标准LTS Linux 内核 + 三方SoC芯片平台代码 + OH内核态基础代码(支撑OH用户态层运行的最基础代码)

因此OH内核态层 = 标准LTS Linux 内核 + 三方SoC芯片平台代码 + OH内核态基础代码 + OH内核态特性(如HDF)

OpenHarmony设备开发 小型系统芯片移植指导-鸿蒙开发者社区

而将前两项组合,标准LTS Linux 内核 + 三方SoC芯片平台代码,其实就是一个三方Linux内核的基础组成。从上面的推导可以看出,OpenHarmony 内核态层其实能够由两种方法得到:

方法一:OH 内核态层 = 三方Linux内核 + OH内核态基础代码 + OH内核态特性(如HDF,今后的HMDFS等)

也就是直接借助三方Linux内核,再加上基础OH内核态基础代码、以及HDF等OH内核态特性。

方法二:OH 内核态层 = OH Linux内核 + OH内核态特性(如HDF,今后的HMDFS等)

也就是直接采用OHLinux内核,然后再加入OH的其他内核态特性。

当前方法二中OHLinux内核支持的三方芯片平台还不够丰富。为了能够响应三方开发者快速移植OpenHarmony的要求,下文会着重介绍方法一,即借助三方已有的Linux内核,来快速移植OpenHarmony。

借助已有Linux内核来移植OpenHarmony的流程

整个移植流程可以分为三步:

  1. 准备整体构建环境,包括将三方芯片平台的现有内核代码拷贝到OpenHarmony的整体编译环境下。
  2. OpenHarmony内核态基础代码的移植。
  3. OpenHarmony内核态必选特性(如HDF等)的移植。

详细步骤在接下来的章节中介绍。

移植到三方芯片平台的步骤

下面以树莓派3b (BCM2837) 为例,演示将OpenHarmony移植到树莓派的过程。

准备整体构建环境
  1. 将三方内核纳入OpenHarmony编译环境。 完整编译过一遍标准Hi3516DV300的内核之后,clone树莓派内核源码并复制到manifest输出目录下:

export PROJ_ROOT=[OpenHarmony manifest]
git clone https://gitee.com/xfan1024/oh-rpi3b-kernel.git
cp -r oh-rpi3b-kernel $PROJ_ROOT/out/KERNEL_OBJ/kernel/src_tmp/linux-rpi3b

2.配置树莓派内核编译环境。

# 进入树莓派kernel目录
cd out/KERNEL_OBJ/kernel/src_tmp/linux-rpi3b

# 配置编译环境,使用工程项目自带的clang
export PATH=$PROJ_ROOT/prebuilts/clang/ohos/linux-x86_64/llvm/bin:$PROJ_ROOT/prebuilts/gcc/linux-x86/arm/gcc-linaro-7.5.0-arm-linux-gnueabi/bin/:$PATH
export MAKE_OPTIONS="ARCH=arm CROSS_COMPILE=arm-linux-gnueabi- CC=clang HOSTCC=clang"
export PRODUCT_PATH=vendor/hisilicon/hispark_taurus_linux

3.注释掉clang不识别的flag。 PROJ_ROOT/out/KERNEL_OBJ/kernel/src_tmp/linux-rpi3b/arch/arm/Makefile注释掉以下这一行:

KBUILD_CFLAGS  +=-fno-omit-frame-pointer -mapcs -mno-sched-prolog

移植内核态基础代码

目前OpenHarmony内核态的基础代码,主要是日志服务相关。轻量化内核日志服务代码包含:

drivers/staging/hilog
drivers/staging/hievent

将以上代码,从OpenHarmony内核代码目录kernel/linux/linux-4.19/drivers/staging中,拷贝到out/KERNEL_OBJ/kernel/src_tmp/linux-rpi3b/drivers/staging下。

在三方内核的drivers/staging/Kconfig文件内增加如下代码:

source "drivers/staging/hilog/Kconfig"
source "drivers/staging/hievent/Kconfig"

在三方内核的drivers/staging/Makefile文件内增加如下代码:

obj-$(CONFIG_HILOG)             += hilog/
obj-$(CONFIG_HIEVENT)           += hievent/

在内核config项中打开对应的CONFIG控制宏:CONFIG_HILOG和CONFIG_HIEVENT。

具体日志使用说明请参见:​​Hilog_lite组件介绍​​。

移植内核态必选特性HDF

  1. 打HDF补丁。 在Linux内核打HDF补丁时,执行补丁shell脚本合入HDF补丁。

1.配置HDF补丁脚本的四个变量参数。

2.获取patch_hdf.sh脚本。

3.执行patch_hdf.sh脚本依次传入四个变量参数。

patch_hdf.sh脚本四个参数含义为:第一个入参为工程根目录路径,第二入参为内核目录路径,第三个入参为内核版本路径,第四个参数是当前设备名。

./patch_hdf.sh [工程根目录路径] [内核目录路径] [内核补丁路径] [设备名]

以树莓派3b为示例介绍:

# 进入树莓派kernel目录
PROJ_ROOT/drivers/adapter/khdf/linux/patch_hdf.sh \
PROJ_ROOT  # 指定工程根目录路径 \
PROJ_ROOT/out/KERNEL_OBJ/kernel/src_tmp/linux-rpi3b  # 打补丁的内核目录路径 \
PROJ_ROOT/kernel/linux/patches/linux-4.19 # 内核补丁路径.\
hi3516dv300 # 设备名.

2.配置config。 提供HDF基本配置,如果需要其他功能,通过menuconfig打开对应驱动开关即可。
HDF补丁执行成功后,默认HDF开关是关闭的,打开HDF基本配置选项如下:

CONFIG_DRIVERS_HDF=y
CONFIG_HDF_SUPPORT_LEVEL=2
CONFIG_DRIVERS_HDF_PLATFORM=y
CONFIG_DRIVERS_HDF_PLATFORM_MIPI_DSI=y
CONFIG_DRIVERS_HDF_PLATFORM_GPIO=y
CONFIG_DRIVERS_HDF_PLATFORM_I2C=y
CONFIG_DRIVERS_HDF_PLATFORM_UART=y
CONFIG_DRIVERS_HDF_TEST=y

或者通过menuconfig界面打开HDF相关配置,命令如下:

# 生成 .config 配置文件
make ${MAKE_OPTIONS} rpi3b_oh_defconfig

# 更改HDF内核配置
make ${MAKE_OPTIONS} menuconfig
# [*] Device Drivers
# [*]   HDF driver framework support --->

配置如下(在Device Drivers -> HDF driver framework support 目录下):

OpenHarmony设备开发 小型系统芯片移植指导-鸿蒙开发者社区

编译Image

# 执行编译命令
make ${MAKE_OPTIONS} -j33 zImage

编译和运行HDF测试用例(可选)

简介

HDF(Hardware Driver Foundation)自测试用例,用于测试HDF框架和外设的基本功能,本文主要介绍HDF内核态用例测试方法。

预置条件

测试前需要在menuconfig里检查HDF测试开关CONFIG_DRIVERS_HDF_TEST=y,代码全量编译通过。

用例编译和测试方法

通过​​hdc_std工具​​把用例执行文件推送到设备中,然后执行用例即可,操作步骤如下:

  1. 编译hdf测试用例。
  2. 用hdc_std工具推送测试文件到设备中。
  3. 进入设备data/test目录,执行测试文件即可。

用例编译和测试详细步骤如下:

  1. 编译hdf测试用例。 编译hdf测试用例命令和文件路径如下:

./build.sh --product-name hispark_taurus_standard --build-target hdf_test

等待编译完成。

2.将测试文件移动到目标移植设备上(以树莓派为例)。
方法一:使用​​​hdc_std工具​​。

  1. 先在树莓派里新建data/test目录。

mkdir -p data/test

2.推送依赖库和测试用例到树莓派。

hdc file send XXX\out\{device_name}\hdf\hdf\libhdf_test_common.z.so  /system/lib
hdc file send XXX\out\{device_name}\tests\unittest\hdf\config\hdf_adapter_uhdf_test_config  /data/test
hdc file send XXX\out\{device_name}\tests\unittest\hdf\devmgr\DevMgrTest  /data/test
hdc file send XXX\out\{device_name}\tests\unittest\hdf\osal\OsalTest  /data/test
hdc file send XXX\out\{device_name}\tests\unittest\hdf\sbuf\SbufTest  /data/test

方法二:移动到储存卡内,启动树莓派之后装载。

  1. 拔掉树莓派连接电脑的串口、USB线,然后拔下数据卡。
  2. 将数据卡插入到电脑的读取口,将编译好的zImage和测试文件夹test/下载到电脑,然后移动到数据卡的根目录下。zImage文件会被替换,请提前做好备份。
  3. 最后将数据卡插回树莓派。

# 让树莓派文件系统读取储存卡根目录
mount -t vfat /dev/block/mmcblk0p1 /boot
cd /boot/[测试文件目录]
# 允许修改系统文件
mount -o remount,rw /
# 安装测试用库
mv libhdf_test_common.z.so /system/lib
mkdir /data/test
mv * /data/test

3.执行测试

1.进入目录执行测试文件目录data/test。

cd /data/test

2.修改文件执行权限。

chmod 777 hdf_adapter_uhdf_test_config DevMgrTest OsalTest SbufTest

3.开始测试。

./hdf_adapter_uhdf_test_config
./DevMgrTest
./OsalTest
./SbufTest

4.如果所有测试文件输出均显示 PASSED,那么HDF功能即安装成功。 示例:DevMgrTest用例成功结果显示:

./DevMgrTest
Running main() from gmock_main.cc
[==========] Running 1 test from 1 test case.
[----------] Global test environment set-up.
[----------] 1 test from DevMgrTest
[ RUN      ] DevMgrTest.DriverLoaderTest_001
[       OK ] DevMgrTest.DriverLoaderTest_001 (0 ms)
[----------] 1 test from DevMgrTest (0 ms total)
[----------] Global test environment tear-down
Gtest xml output finished
[==========] 1 test from 1 test case ran. (0 ms total)
[  PASSED  ] 1 test.


文章转载自:​​https://docs.openharmony.cn/pages/v3.2Beta/zh-cn/device-dev/porting/standard-system-porting-guide.md/​

分类
收藏
回复
举报
回复
    相关推荐