
鸿蒙机器学习负载均衡测试方案设计与实现 原创
鸿蒙机器学习负载均衡测试方案设计与实现
一、系统架构设计
基于HarmonyOS的分布式能力,我们设计了一套机器学习负载均衡系统,用于优化跨设备场景下的AI推理任务分配。
!https://example.com/ml-loadbalance-arch.png
系统包含三大核心模块:
设备性能评估模块 - 实时监测各设备计算能力
任务调度模块 - 动态分配AI推理任务
负载均衡测试模块 - 验证调度策略有效性
二、核心代码实现
设备性能评估服务(Java)
// DevicePerformanceService.java
public class DevicePerformanceService extends Ability {
private static final String TAG = “DevicePerformance”;
private static final int UPDATE_INTERVAL = 5000; // 5秒更新一次
private Map<String, DevicePerf> devicePerfMap = new ConcurrentHashMap<>();
private ScheduledExecutorService scheduler;
@Override
public void onStart(Intent intent) {
super.onStart(intent);
startMonitoring();
private void startMonitoring() {
scheduler = Executors.newSingleThreadScheduledExecutor();
scheduler.scheduleAtFixedRate(() -> {
updateLocalDevicePerf();
updateRemoteDevicesPerf();
}, 0, UPDATE_INTERVAL, TimeUnit.MILLISECONDS);
private void updateLocalDevicePerf() {
DevicePerf perf = new DevicePerf();
perf.deviceId = getLocalDeviceId();
perf.cpuUsage = getCpuUsage();
perf.memAvailable = getAvailableMemory();
perf.gpuCapability = getGpuCapability();
perf.networkLatency = getNetworkLatency();
// 计算综合性能评分
perf.score = calculatePerformanceScore(perf);
devicePerfMap.put(perf.deviceId, perf);
private void updateRemoteDevicesPerf() {
DistributedDeviceManager.getDevices().forEach(device -> {
if (!devicePerfMap.containsKey(device.id)) {
DevicePerf perf = fetchRemoteDevicePerf(device.id);
devicePerfMap.put(device.id, perf);
});
private float calculatePerformanceScore(DevicePerf perf) {
// 加权计算性能评分
return perf.cpuUsage * 0.3f +
perf.memAvailable * 0.2f +
perf.gpuCapability * 0.4f +
(1 - perf.networkLatency) * 0.1f;
// 获取设备性能推荐
public DevicePerf getDevicePerf(String deviceId) {
return devicePerfMap.getOrDefault(deviceId, new DevicePerf());
// 获取最优设备
public String getBestDevice() {
return devicePerfMap.entrySet().stream()
.max(Comparator.comparingDouble(e -> e.getValue().score))
.map(Map.Entry::getKey)
.orElse(getLocalDeviceId());
public static class DevicePerf {
public String deviceId;
public float cpuUsage; // CPU使用率(0-1)
public float memAvailable; // 可用内存比例(0-1)
public float gpuCapability; // GPU能力评分(0-1)
public float networkLatency; // 网络延迟(0-1)
public float score; // 综合评分
public boolean isAvailable() {
return cpuUsage < 0.8f && memAvailable > 0.2f;
}
负载均衡调度器(Java)
// LoadBalancer.java
public class LoadBalancer {
private static final String TAG = “LoadBalancer”;
private DevicePerformanceService perfService;
private Map<String, Integer> taskCountMap = new ConcurrentHashMap<>();
public LoadBalancer(Context context) {
perfService = new DevicePerformanceService(context);
// 分配推理任务
public String assignTask(MLTask task) {
// 获取可用设备列表
Map<String, DevicePerformanceService.DevicePerf> availableDevices =
perfService.getAvailableDevices();
// 负载均衡策略
String deviceId = chooseDevice(availableDevices, task);
// 记录任务分配
taskCountMap.merge(deviceId, 1, Integer::sum);
HiLog.info(TAG, "任务分配: " + task.taskId + " → " + deviceId);
return deviceId;
private String chooseDevice(Map<String, DevicePerformanceService.DevicePerf> devices,
MLTask task) {
// 根据任务类型选择策略
switch (task.priority) {
case HIGH:
// 高性能优先
return devices.entrySet().stream()
.max(Comparator.comparingDouble(e -> e.getValue().score))
.map(Map.Entry::getKey)
.orElse(perfService.getLocalDeviceId());
case LOW:
// 低负载优先
return devices.entrySet().stream()
.min(Comparator.comparingInt(e -> taskCountMap.getOrDefault(e.getKey(), 0)))
.map(Map.Entry::getKey)
.orElse(perfService.getLocalDeviceId());
default:
// 混合策略
return devices.entrySet().stream()
.max(Comparator.comparingDouble(e ->
e.getValue().score 0.7 - taskCountMap.getOrDefault(e.getKey(), 0) 0.3))
.map(Map.Entry::getKey)
.orElse(perfService.getLocalDeviceId());
}
// 任务完成回调
public void onTaskCompleted(String deviceId) {
taskCountMap.computeIfPresent(deviceId, (k, v) -> v > 0 ? v - 1 : 0);
public static class MLTask {
public String taskId;
public Priority priority;
public long dataSize;
public enum Priority {
HIGH, MEDIUM, LOW
}
负载测试界面(ArkTS)
// LoadTestUI.ets
import lb from ‘…/services/LoadBalancer’;
import devicePerf from ‘…/services/DevicePerformanceService’;
@Entry
@Component
struct LoadTestUI {
@State devices: DeviceInfo[] = [];
@State testCases: TestCase[] = [];
@State testResults: TestResult[] = [];
@State isTesting: boolean = false;
@State currentStrategy: string = ‘performance’;
aboutToAppear() {
this.loadTestCases();
this.loadDevices();
private loadTestCases() {
this.testCases = [
id: ‘light’, name: ‘轻量级任务’, complexity: 1 },
id: ‘medium’, name: ‘中等任务’, complexity: 2 },
id: ‘heavy’, name: ‘重量级任务’, complexity: 3 }
];
private loadDevices() {
devicePerf.getDevices((devices) => {
this.devices = devices.map(d => ({
id: d.deviceId,
name: d.deviceName,
score: d.score
}));
});
build() {
Column() {
// 策略选择
this.buildStrategySelector()
// 设备状态
this.buildDeviceStatus()
// 测试用例
this.buildTestCases()
// 测试结果
if (this.testResults.length > 0) {
this.buildTestResults()
}
@Builder
private buildStrategySelector() {
Row() {
Text(‘调度策略:’)
.fontSize(16)
Select({
options: [
value: ‘performance’, name: ‘性能优先’ },
value: ‘balance’, name: ‘负载均衡’ },
value: ‘hybrid’, name: ‘混合模式’ }
],
selected: this.currentStrategy
})
.onSelect((value: string) => {
this.currentStrategy = value;
lb.setStrategy(value);
})
.padding(10)
@Builder
private buildDeviceStatus() {
Column() {
Text(‘设备状态’)
.fontSize(18)
.margin(10)
Grid() {
ForEach(this.devices, (device) => {
GridItem() {
DeviceStatusCard({ device })
})
.columnsTemplate(‘1fr 1fr’)
.columnsGap(10)
.rowsGap(10)
}
@Builder
private buildTestCases() {
Column() {
Text(‘测试用例’)
.fontSize(18)
.margin(10)
ForEach(this.testCases, (testCase) => {
Button(testCase.name)
.onClick(() => this.runTest(testCase))
.width('80%')
.margin(5)
})
}
@Builder
private buildTestResults() {
Column() {
Text(‘测试结果’)
.fontSize(18)
.margin(10)
List() {
ForEach(this.testResults, (result) => {
ListItem() {
TestResultItem({ result })
})
.height(200)
}
private runTest(testCase: TestCase) {
this.isTesting = true;
// 模拟任务
const task = {
id: test_{testCase.id}_{Date.now()},
complexity: testCase.complexity
};
// 分配任务
const startTime = Date.now();
const deviceId = lb.assignTask(task);
const assignTime = Date.now() - startTime;
// 模拟任务执行
setTimeout(() => {
const endTime = Date.now();
const execTime = endTime - startTime;
this.testResults = [...this.testResults, {
testId: task.id,
testName: testCase.name,
deviceId,
assignTime,
execTime,
strategy: this.currentStrategy
}];
lb.onTaskCompleted(deviceId);
this.isTesting = false;
}, testCase.complexity * 1000);
}
@Component
struct DeviceStatusCard {
@Prop device: DeviceInfo
build() {
Stack() {
Column() {
Text(this.device.name)
.fontSize(16)
Text(性能评分: ${this.device.score.toFixed(2)})
.fontSize(12)
.fontColor('#666666')
.width(‘100%’)
.padding(10)
// 性能指示器
Circle()
.width(10)
.height(10)
.fill(this.getStatusColor())
.position({ x: '85%', y: '10%' })
.height(80)
.borderRadius(8)
.backgroundColor('#F5F5F5')
private getStatusColor(): Color {
if (this.device.score > 0.7) return Color.Green;
if (this.device.score > 0.4) return Color.Yellow;
return Color.Red;
}
@Component
struct TestResultItem {
@Prop result: TestResult
build() {
Row() {
Column() {
Text(this.result.testName)
.fontSize(16)
Text(设备: ${this.result.deviceId})
.fontSize(12)
.fontColor('#666666')
.layoutWeight(1)
Column() {
Text(${this.result.execTime}ms)
.fontSize(14)
Text(this.result.strategy)
.fontSize(12)
.fontColor('#409EFF')
}
.padding(10)
}
interface DeviceInfo {
id: string;
name: string;
score: number;
interface TestCase {
id: string;
name: string;
complexity: number;
interface TestResult {
testId: string;
testName: string;
deviceId: string;
assignTime: number;
execTime: number;
strategy: string;
三、关键技术实现
负载均衡算法
// 负载均衡策略实现
function balanceStrategy(devices: DeviceInfo[], tasks: Task[]): AllocationResult {
const deviceScores = devices.map(d => ({
id: d.id,
score: d.cpuScore 0.4 + d.memScore 0.3 + d.gpuScore * 0.3
}));
// 按任务复杂度排序
const sortedTasks = […tasks].sort((a, b) => b.complexity - a.complexity);
const allocations: AllocationResult = {};
for (const task of sortedTasks) {
// 找出最适合的设备
const bestDevice = deviceScores.reduce((prev, curr) => {
const prevLoad = allocations[prev.id]?.load || 0;
const currLoad = allocations[curr.id]?.load || 0;
// 平衡分数和当前负载
const prevScore = prev.score - prevLoad * 0.5;
const currScore = curr.score - currLoad * 0.5;
return currScore > prevScore ? curr : prev;
});
// 分配任务
if (!allocations[bestDevice.id]) {
allocations[bestDevice.id] = { tasks: [], load: 0 };
allocations[bestDevice.id].tasks.push(task.id);
allocations[bestDevice.id].load += task.complexity;
return allocations;
设备性能评估模型
// 设备性能评估算法
public class DeviceEvaluator {
private static final float CPU_WEIGHT = 0.4f;
private static final float GPU_WEIGHT = 0.4f;
private static final float MEM_WEIGHT = 0.2f;
public static float evaluatePerformance(DeviceSpec spec) {
// 标准化各指标
float cpuScore = normalize(spec.cpuBenchmark, 1000, 5000);
float gpuScore = normalize(spec.gpuBenchmark, 500, 3000);
float memScore = normalize(spec.memSize, 2, 8);
// 加权计算
return cpuScore * CPU_WEIGHT +
gpuScore * GPU_WEIGHT +
memScore * MEM_WEIGHT;
private static float normalize(float value, float min, float max) {
return Math.min(1, Math.max(0, (value - min) / (max - min)));
public static class DeviceSpec {
public float cpuBenchmark; // CPU基准分
public float gpuBenchmark; // GPU基准分
public float memSize; // 内存大小(GB)
}
动态任务调度流程
sequenceDiagram
participant 客户端
participant 调度器
participant 设备A
participant 设备B
客户端->>调度器: 提交AI任务(优先级HIGH)
调度器->>设备A: 检查设备状态
设备A-->>调度器: 返回性能指标
调度器->>设备B: 检查设备状态
设备B-->>调度器: 返回性能指标
调度器->>调度器: 选择最优设备(设备B)
调度器->>设备B: 分配任务
设备B->>设备B: 执行AI推理
设备B-->>客户端: 返回结果
设备B-->>调度器: 通知任务完成
四、测试方案
基准测试用例(Java)
public class LoadBalancerTest {
private LoadBalancer loadBalancer;
private DevicePerformanceService perfService;
@Before
public void setup() {
perfService = new DevicePerformanceService();
loadBalancer = new LoadBalancer(perfService);
@Test
public void testPerformanceStrategy() {
// 模拟3个设备
perfService.updateDevicePerf("device1", 0.9f); // 高性能
perfService.updateDevicePerf("device2", 0.7f);
perfService.updateDevicePerf("device3", 0.5f);
// 创建高优先级任务
LoadBalancer.MLTask task = new LoadBalancer.MLTask();
task.taskId = "high_priority_task";
task.priority = LoadBalancer.MLTask.Priority.HIGH;
// 验证分配结果
String assignedDevice = loadBalancer.assignTask(task);
assertEquals("device1", assignedDevice);
@Test
public void testBalanceStrategy() {
// 模拟3个设备
perfService.updateDevicePerf("device1", 0.8f);
perfService.updateDevicePerf("device2", 0.7f);
perfService.updateDevicePerf("device3", 0.6f);
// 让device1已经有3个任务
loadBalancer.taskCountMap.put("device1", 3);
// 创建中优先级任务
LoadBalancer.MLTask task = new LoadBalancer.MLTask();
task.taskId = "medium_priority_task";
task.priority = LoadBalancer.MLTask.Priority.MEDIUM;
// 验证分配结果
String assignedDevice = loadBalancer.assignTask(task);
assertEquals("device2", assignedDevice);
}
端到端负载测试(ArkTS)
// LoadTest.ets
@Entry
@Component
struct LoadTest {
@State testResults: LoadTestResult[] = [];
@State isTesting: boolean = false;
build() {
Column() {
Button(this.isTesting ? ‘测试中…’ : ‘开始负载测试’)
.onClick(() => this.runLoadTest())
.disabled(this.isTesting)
.width(‘80%’)
.margin(10)
if (this.testResults.length > 0) {
this.buildResults()
}
@Builder
private buildResults() {
Column() {
Text(‘负载测试结果’)
.fontSize(18)
.margin(10)
Grid() {
ForEach(this.testResults, (result) => {
GridItem() {
TestResultCard({ result })
})
.columnsTemplate(‘1fr 1fr’)
.columnsGap(10)
.rowsGap(10)
}
private async runLoadTest() {
this.isTesting = true;
this.testResults = [];
// 模拟100个任务
const tasks = this.generateTasks(100);
const startTime = Date.now();
// 执行任务分配
const allocations: Record<string, number> = {};
for (const task of tasks) {
const deviceId = lb.assignTask(task);
allocations[deviceId] = (allocations[deviceId] || 0) + 1;
// 模拟任务执行
await new Promise(resolve =>
setTimeout(resolve, task.complexity * 10));
lb.onTaskCompleted(deviceId);
// 记录结果
const totalTime = Date.now() - startTime;
this.testResults = Object.entries(allocations).map(([deviceId, count]) => ({
deviceId,
taskCount: count,
efficiency: count / totalTime
}));
this.isTesting = false;
private generateTasks(count: number): TestTask[] {
const tasks: TestTask[] = [];
for (let i = 0; i < count; i++) {
tasks.push({
id: task_${i},
complexity: Math.floor(Math.random() * 3) + 1,
priority: ['high', 'medium', 'low'][Math.floor(Math.random() * 3)]
});
return tasks;
}
@Component
struct TestResultCard {
@Prop result: LoadTestResult
build() {
Column() {
Text(this.result.deviceId)
.fontSize(16)
Text(任务数: ${this.result.taskCount})
.fontSize(14)
Text(效率: ${this.result.efficiency.toFixed(2)})
.fontSize(12)
.fontColor('#409EFF')
.padding(10)
.borderRadius(8)
.backgroundColor('#F5F5F5')
}
interface TestTask {
id: string;
complexity: number;
priority: string;
interface LoadTestResult {
deviceId: string;
taskCount: number;
efficiency: number;
五、总结与展望
本方案实现了以下核心功能:
智能任务分配:根据设备性能和当前负载动态分配AI任务
多策略支持:支持性能优先、负载均衡等多种调度策略
实时监控:持续跟踪设备状态和任务执行情况
弹性扩展:可轻松集成新设备和AI模型
未来优化方向:
增加预测性调度算法
支持联邦学习场景
集成能耗优化策略
增强异常处理能力
通过本方案,可以充分发挥鸿蒙分布式能力,在跨设备场景下实现高效的机器学习任务协同,为游戏、AR/VR等高性能应用提供有力支撑。
